Shellable drawings
and the crossing number of the complete graph

Bernardo Ábrego Silvia Fernández
California State University
USA

Gelasio Salazar
UA San Luis Potosí
México

Oswin Aichholzer
Technical Univ. Graz
Austria

Pedro Ramos
Universidad de Alcalá
Spain
Introduction

* The crossing number of a graph G, $\text{cr}(G)$, is the smallest number of crossings between edges in all drawings of G.

Introduction

* The crossing number of a graph G, $\text{cr}(G)$, is the smallest number of crossings between edges in all drawings of G.

* It is easy to see that drawings with the smallest number of crossings are good:
 * two edges share at most one point (including the vertex).
 * all crossings are proper (no tangents).
Introduction

* The crossing number of a graph G, $\text{cr}(G)$, is the smallest number of crossings between edges in all drawings of G.

* It is easy to see that drawings with the smallest number of crossings are good:
 * two edges share at most one point (including the vertex).
 * all crossings are proper (no tangents).
Introduction

* The **crossing number** of a graph G, $cr(G)$, is the smallest number of **crossings** between edges in all drawings of G.

* It is easy to see that drawings with the smallest number of crossings are **good**:
 * two edges share at most one point (including the vertex).
 * all crossings are **proper** (no tangents).

$$cr(K_5) = 1$$
The crossing number of a graph

Finding the crossing number of a graph is hard:

- Computing $cr(G)$ is NP-hard.
The crossing number of a graph

Finding the crossing number of a graph is hard:

- Computing \(cr(G) \) is NP-hard.

- If we add a single edge \(e \) to a plane graph \(G \), computing \(cr(G \cup \{e\}) \) is also NP-hard.

[Cabello-Mohar, 2010]
A brief history of $\text{cr}(K_n)$

A brief history of \(cr(K_n) \)

* P. Turán (1944) propose the problem for the bipartite complete graph, \(K_{n,m} \).
A brief history of \(cr(K_n) \)

* P. Turán (1944) propose the problem for the bipartite complete graph, \(K_{n,m} \). \(\rightarrow \) Zarankiewicz (1952)
A brief history of $\text{cr}(K_n)$

* P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$. → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for K_n.
A brief history of \(cr(K_n) \)

* P. Turán (1944) propose the problem for the bipartite complete graph, \(K_{n,m} \). → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for \(K_n \).

* Hill finds the following drawings:
A brief history of $cr(K_n)$

* P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$. → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for K_n.

* Hill finds the following drawings:
A brief history of $cr(K_n)$

* P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$. → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for K_n.

* Hill finds the following drawings:
A brief history of $cr(K_n)$

* P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$. → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for K_n.

* Hill finds the following drawings:
A brief history of $\text{cr}(K_n)$

* P. Turán (1944) propose the problem for the bipartite complete graph, $K_{n,m}$. → Zarankiewicz (1952)

* A. Hill (c. 1958) studies the problem for K_n.

* Hill finds the following drawings:

The number of crossings in these drawings is $Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor$

Zarankiewicz number
A brief history of $\text{cr}(K_n)$

* Conjecture [Harary-Hill (1963), Guy (1962)]: $\text{cr}(K_n) = \mathbb{Z}_n$.
A brief history of $\text{cr}(K_n)$

* Conjecture [Harary-Hill (1963), Guy (1962)]: $\text{cr}(K_n) = Z_n$.

* Hill’s construction shows that $\text{cr}(K_n) \leq Z(n)$.
A brief history of \(cr(K_n) \)

* Conjecture [Harary-Hill (1963), Guy (1962)]: \(cr(K_n) = Z_n \).

* Hill’s construction shows that \(cr(K_n) \leq Z(n) \).

* Some known results for small \(n \):

 - \(cr(K_n) = Z(n) \) si \(n \leq 10 \) [Guy, 1971]

 - \(n = 11, n = 12 \) [Pan-Richter, 2007]
A brief history of $\text{cr}(K_n)$

* Conjecture [Harary-Hill (1963), Guy (1962)]: $\text{cr}(K_n) = Z_n$.

* Hill’s construction shows that $\text{cr}(K_n) \leq Z(n)$.

* Some known results for small n:

 ◊ $\text{cr}(K_n) = Z(n)$ if $n \leq 10$ [Guy, 1971]
 ◊ $n = 11, n = 12$ [Pan-Richter, 2007]

* Assymptotics:

 $\text{cr}(K_n) \geq 0.8594 Z(n)$ [de Klerk-Pasechik-Schrijver, 2007]
A brief history of $\text{cr}(K_n)$

* Conjecture [Harary-Hill (1963), Guy (1962)]: $\text{cr}(K_n) = Z_n$.

* Hill’s construction shows that $\text{cr}(K_n) \leq Z(n)$.

* Some known results for small n:

 \diamond $\text{cr}(K_n) = Z(n)$ si $n \leq 10$ [Guy, 1971]

 \diamond $n = 11, n = 12$ [Pan-Richter, 2007]

* Assymptotics:

 $\text{cr}(K_n) \geq 0.8594 Z(n)$ [de Klerk-Pasechik-Schrijver, 2007]

* This was the situation, till a new tool was borrowed from the rectilinear case.
Rectilinear crossing number

* The rectilinear crossing number of G, $\text{cr}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).
Rectilinear crossing number

* The rectilinear crossing number of G, $\text{cr}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).

* For $\text{cr}(K_n)$, there is an equivalent formulation: $\square(S)$: number of convex quadrilaterals in S.

$$\text{cr}(K_n) = \min_{|S|=n} \square(S)$$
Rectilinear crossing number

* The rectilinear crossing number of G, $\overline{cr}(G)$, is the smallest number of crossings in drawings of G in which edges are segments. (Vertices in general position).

* For $\overline{cr}(K_n)$, there is an equivalent formulation: $\square(S)$: number of convex quadrilaterals in S.

\[\overline{cr}(K_n) = \min_{|S|=n} \square(S) \]
Rectilinear crossing number

* Until 2004, the status of the rectilinear problem was similar to that of the general case.
 * small values of n
 * far from tight asymptotics
Rectilinear crossing number

* Until 2004, the status of the rectilinear problem was similar to that of the general case.
 * small values of n
 * far from tight asymptotics

Relation between $\square(S')$ and the number of j-edges of S.
j-edges

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) j-edge if there are j points of S in the right half-plane defined by pq.
j-edges

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) j-edge if there are j points of S in the right half-plane defined by pq.

3-edge
\(j \)-edges

* Let \(S \) be a set of \(n \) points in the plane in general position. Given \(p, q \in S \), we say that \(pq \) is an (oriented) \(j \)-edge if there are \(j \) points of \(S \) in the right half-plane defined by \(pq \).

* \(e_j(S) := \# j \)-edges of \(S \).
j-edges

* Let S be a set of n points in the plane in general position. Given $p, q \in S$, we say that pq is an (oriented) j-edge if there are j points of S in the right half-plane defined by pq.

![Diagram of j-edge](image)

* $e_j(S) := \# j$-edges of S.

* If pq is a j-edge, then qp is a $n - j - 2$-edge.

It is also possible to work with unoriented j-edges.
j-edges and convex quadrilaterals (crossings)

\[\Delta(S') + \square(S') = \binom{n}{4} \] \hspace{1cm} (1)
j-edges and convex quadrilaterals (crossings)

* $\Delta(S) + \Box(S) = \binom{n}{4}$ (1)

* Another relation: double counting of separations. A separation is a 4-tuple $\{p, q, u, v\}$ where the ordered pair p, q leaves u to the right and v to the left.
j-edges and convex quadrilaterals (crossings)

* $\triangle(S) + \square(S) = \binom{n}{4}$ (1)

* Another relation: double counting of separations. A separation is a 4-tuple \(\{p, q, u, v\} \) where the ordered pair \(p, q \) leaves \(u \) to the right and \(v \) to the left.

\[\text{six separations} \]
\(j \)-edges and convex quadrilaterals (crossings)

* \(\Delta(S) + \Box(S) = \binom{n}{4} \) \hspace{2cm} (1)

* Another relation: double counting of separations. A separation is a 4-tuple \(\{p, q, u, v\} \) where the ordered pair \(p, q \) leaves \(u \) to the right and \(v \) to the left.

\[\text{six separations} \quad \text{four separations} \]
j-edges and convex quadrilaterals (crossings)

* $\Delta(S) + \Box(S) = \binom{n}{4}$ \hspace{1cm} (1)

* Another relation: double counting of separations. A separation is a 4-tuple \{p, q, u, v\} where the ordered pair p, q leaves u to the right and v to the left.

\begin{align*}
\sum_{j=0}^{n-2} j(n - j - 2) e_j(S) \hspace{1cm} (2)
\end{align*}
\(j \)-edges and convex quadrilaterals (crossings)

* From these equations (and the relations \(e_j = e_{n-j-2} \) and \(\sum_{j=0}^{n-2} e_j = n(n - 1) \)) we get

\[
\square(S) = \sum_{j<\frac{n-2}{2}} \left(\frac{n-2}{2} - j \right)^2 e_j(S) - \frac{3}{4} \binom{n}{3}
\]
* From these equations (and the relations $e_j = e_{n-j-2}$ and $\sum_{j=0}^{n-2} e_j = n(n-1)$) we get

$$\square(S) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j \right)^2 e_j(S) - \frac{3}{4} \binom{n}{3}$$

* Considering $E_{\leq k}(S) = \sum_{j=0}^{k} e_j(S)$

$$\square(S) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(S) + c_n$$
\(j \)-edges and convex quadrilaterals (crossings)

* From these equations (and the relations \(e_j = e_{n-j-2} \) and \(\sum_{j=0}^{n-2} e_j = n(n-1) \)) we get

\[
\square(S) = \sum_{j < \frac{n-2}{2}} \left(\frac{n-2}{2} - j \right)^2 e_j(S) - \frac{3}{4} \binom{n}{3}
\]

* Considering \(E_{\leq k}(S') = \sum_{j=0}^{k} e_j(S') \)

\[
\square(S) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(S') + c_n
\]
Lower bounds for $\overline{cr}(K_n)$

* [AF - LVWW, 2004] \[E_{\leq k}(S) \geq 3 \binom{k + 2}{2} \]
Lower bounds for $\overline{\text{cr}}(K_n)$

* [AF - LVWW, 2004]

\[
E_{\leq k}(S) \geq 3 \binom{k + 2}{2} \\
\downarrow \\
\overline{\text{cr}}(K_n) \geq 0.375 \binom{n}{4} \approx Z(n)
\]
Lower bounds for $\overline{\text{cr}}(K_n)$

* [AF - LVWW, 2004] \[E_{\leq k}(S) \geq 3 \binom{k + 2}{2} \]
 \[\Downarrow \]
 \[\overline{\text{cr}}(K_n) \geq 0.375 \binom{n}{4} \approx Z(n) \]

* LVWW use an improved bound for $E_{\leq k}$ (for k close to $n/2$), to show that
 \[\overline{\text{cr}}(K_n) \geq 0.37501 \binom{n}{4} \]
Bounds for $\overline{cr}(K_n)$

* 2006 – 2010 Series of improvements on the lower bound for $E_{\leq k}(S)$. (And on the lower bound for $\overline{cr}(K_n)$)

 ★ [Balogh-Salazar’06]
 ★ [Aichholzer-García-Orden-R.’07]
 ★ [Ábrego,Cetina,Fernández-Merchant,Leaños,Salazar’11].

Current bounds:

$$0.37968 \binom{n}{4} + O(n^3) \leq \overline{cr}(K_n) \leq 0.380488 \binom{n}{4} + O(n^3)$$
Bounds for $\overline{cr}(K_n)$

* 2006 – 2010 Series of improvements on the lower bound for $E_{\leq k}(S)$. (And on the lower bound for $\overline{cr}(K_n)$)
 * [Balogh-Salazar’06]
 * [Aichholzer-García-Orden-R.’07]
 * [Ábrego,Cetina,Fernández-Merchant,Leaños,Salazar’11].

Current bounds:

$$0.37968 \binom{n}{4} + O(n^3) \leq \overline{cr}(K_n) \leq 0.380488 \binom{n}{4} + O(n^3)$$

[Aurenhammer-Aichholzer-Krasser]
[Ábrego,Cetina,Fernández-Merchant,Leaños,Salazar]
General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

\[\square(S') = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(S) + c_n \]

we write \(3 \binom{k+2}{2}\) in the place of \(E_{\leq k}(S')\) we get
General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

\[\Box(S) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E \leq_k (S) + c_n \]

we write \(3\binom{k+2}{2}\) in the place of \(E \leq_k (S)\) we get

\[\sum_{k < \frac{n-2}{2}} (n - 2k - 3) 3\binom{k+2}{2} + c_n = \frac{1}{4} \floor{\frac{n}{2}} \floor{\frac{n-1}{2}} \floor{\frac{n-2}{2}} \floor{\frac{n-3}{2}} \]
General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

\[\Box(S) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(S) + c_n \]

we write \[3\binom{k + 2}{2} \] in the place of \(E_{\leq k}(S) \) we get

\[
\sum_{k < \frac{n-2}{2}} (n-2k-3) 3\binom{k + 2}{2} + c_n = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \]

\[Z(n) \]
General (topological) drawings

* BIRS - Crossing numbers turn useful. (August 2011)

If in the formula

$$\square(S) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(S) + c_n$$

we write $3\left(\frac{k}{2} + 2\right)$ in the place of $E_{\leq k}(S)$ we get

$$\sum_{k < \frac{n-2}{2}} (n - 2k - 3) 3\left(\frac{k}{2} + 2\right) + c_n = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor \parallel Z(n)$$

* Is that a coincidence?
j-edges in topological drawings
j-edges in topological drawings

Consider the triangles!

$$\sigma(pqr) = +$$
Consider the triangles!

\[\sigma(pqr) = + \]
\[\sigma(pqs) = - \]
Consider the triangles!

\[\sigma(pqr) = + \]
\[\sigma(pqs) = - \]

Let \(D \) be a good drawing of \(K_n \). We say that \(r \) is to the right of \(pq \) if \(pqr \) is oriented clockwise.
Consider the triangles!

\[\sigma(pqr) = + \]

\[\sigma(pqs) = - \]

* Let \(D \) be a good drawing of \(K_n \). We say that \(r \) is to the right of \(pq \) if \(pqr \) is oriented clockwise.
\(j\)-edges in topological drawings

Consider the triangles!

\[
\sigma(pqr) = +
\]
\[
\sigma(pqs) = -
\]

* Let \(D\) be a good drawing of \(K_n\). We say that \(r\) is to the right of \(pq\) if \(pqr\) is oriented clockwise.

* And now we can define \(j\)-edges exactly as in the geometric setting.
j-edges and crossings (in topological drawings)

* Now we need to generalize the relation

$$6 \Delta(S') + 4 \square(S') = \sum_{j=0}^{n-2} j(n - j - 2) e_j(S')$$
j-edges and crossings (in topological drawings)

* Now we need to generalize the relation

$$6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n - j - 2) e_j(S)$$

* In a good drawing of K_4 there is at most one crossing.
\(j\)-edges and crossings (in topological drawings)

* Now we need to generalize the relation

\[
6 \Delta(S) + 4 \Box(S) = \sum_{j=0}^{n-2} j(n - j - 2)e_j(S)
\]

* In a good drawing of \(K_4\) there is at most one crossing.
j-edges and crossings (in topological drawings)

* There are three “different” drawings of K_4.

\begin{figure}
\centering
\begin{tikzpicture}
\tikzstyle{vertex}=[circle, fill=black, inner sep=1pt]
\tikzstyle{edge}=[thick, blue]
\node[vertex] (v1) at (0,0) [label=1:1]{};
\node[vertex] (v2) at (3,0) [label=2:2]{};
\node[vertex] (v3) at (2,2) [label=3:3]{};
\node[vertex] (v4) at (0,3) [label=4:4]{};
\draw[edge] (v1) -- (v3);
\draw[edge] (v1) -- (v4);
\draw[edge] (v2) -- (v3);
\draw[edge] (v2) -- (v4);
\end{tikzpicture}
\end{figure}
j-edges and crossings (in topological drawings)

* There are three “different” drawings of K_4.

\begin{align*}
\text{1} & \quad 2 & \quad 3 & \quad 4 \\
\text{1} & \quad 2 & \quad 3 & \quad 4 \\
\text{1} & \quad 2 & \quad 3 & \quad 4
\end{align*}
j-edges and crossings (in topological drawings)

* There are three “different” drawings of K_4.

![Diagram of K_4 drawings](image-url)
j-edges and crossings (in topological drawings)

* The relation between j-edges and crossings is the same as in the rectilinear case.
\(j \)-edges and crossings (in topological drawings)

* The relation between \(j \)-edges and crossings is \textbf{the same} as in the rectilinear case.
\textbf{j-edges and crossings (in topological drawings)}

\begin{itemize}
 \item The relation between j-edges and crossings is \textit{the same} as in the rectilinear case.
\end{itemize}

\begin{figure}
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (1,1) {3};
 \node (4) at (1,-1) {4};
 \draw (1) -- (2);
 \draw (1) -- (3);
 \draw (1) -- (4);
 \draw (2) -- (3);
 \draw (2) -- (4);
 \node at (1.5,0) {C_A};
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (1,1) {3};
 \node (4) at (1,-1) {4};
 \draw (1) -- (3);
 \draw (1) -- (4);
 \draw (2) -- (3);
 \draw (2) -- (4);
 \node at (1.5,0) {6 separations};
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (2) at (2,0) {2};
 \node (3) at (1,1) {3};
 \node (4) at (1,-1) {4};
 \draw (1) -- (3);
 \draw (1) -- (4);
 \draw (2) -- (3);
 \draw (2) -- (4);
 \node at (1.5,0) {no crossing};
\end{tikzpicture}
\end{subfigure}
\end{figure}
\textit{j}-edges and crossings (in topological drawings)

* The relation between \textit{j}-edges and crossings is \textit{the same} as in the rectilinear case.

\begin{itemize}
\item \(C_A\)
\end{itemize}
j-edges and crossings (in topological drawings)

* The relation between j-edges and crossings is the same as in the rectilinear case.

\[C_A \]

\[C_B \]

no crossing

6 separations
j-edges and crossings (in topological drawings)

* The relation between j-edges and crossings is the same as in the rectilinear case.

\[C_A \]

\[C_B \]

no crossing
6 separations

one crossing \rightarrow 4 separations
j-edges and crossings (in topological drawings)

So we have:

1. $|C_B| = \text{cr}(D)$
2. $|C_A| + |C_B| = \binom{n}{4}$
3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n - j - 2) e_j(D)$
j-edges and crossings (in topological drawings)

* So we have:

1. $|C_B| = \text{cr}(D)$
2. $|C_A| + |C_B| = \binom{n}{4}$

3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n - j - 2) e_j(D)$

* $\text{cr}(D) = \sum_{j < \frac{n-2}{2}} \left(\frac{n - 2}{2} - j \right)^2 e_j(D) - \frac{3}{4} \binom{n}{3}$
j-edges and crossings (in topological drawings)

* So we have:

1. $|C_B| = \text{cr}(D)$
2. $|C_A| + |C_B| = \binom{n}{4}$
3. $6|C_A| + 4|C_B| = \sum_{j=0}^{n-2} j(n - j - 2) e_j(D)$

* $\text{cr}(D) = \sum_{j < \frac{n-2}{2}} \left(\frac{n - 2}{2} - j \right)^2 e_j(D) - \frac{3}{4} \binom{n}{3}$

* Finally, using $(\leq k)$-edges,

$$\text{cr}(D) = \sum_{k < \frac{n-2}{2}} (n - 2k - 3) E_{\leq k}(D) - \frac{3}{4} \binom{n}{3} + c_n$$
j-edges and crossings

* If we could prove $E_{\leq k}(D) \geq 3\binom{k + 2}{2}$, we would have $\text{cr}(K_n) \geq Z(n)$.
\(j\)-edges and crossings

* If we could prove \(E_{\leq k}(D) \geq 3 \binom{k + 2}{2}\), we would have \(\text{cr}(K_n) \geq Z(n)\).

It’s not true 😞
\textbf{\textit{j}-edges and crossings}

* If we could prove $E_{\leq k}(D) \geq 3 \binom{k + 2}{2}$, we would have $\text{cr}(K_n) \geq Z(n)$.

\begin{figure}[h]
\centering
\includegraphics[width=5cm]{example.png}
\caption{Example figure}
\end{figure}

\text{It's not true ☹️}

* First try: is previous lower bound for $E_{\leq k}(D)$ true for any interesting family of drawings of K_n?
j-edges and crossings

* If we could prove $E_{\leq k}(D) \geq 3\binom{k+2}{2}$, we would have $\text{cr}(K_n) \geq Z(n)$.

It’s not true

* First try: is previous lower bound for $E_{\leq k}(D)$ true for any interesting family of drawings of K_n?

* 2-page drawings:
 * vertices on a line
 * edges in one of the halfplanes
\textit{j}-edges and crossings

\begin{itemize}
 \item If we could prove $E_{\leq k}(D) \geq 3\left(\frac{k+2}{2}\right)$, we would have $cr(K_n) \geq Z(n)$. \\

 \begin{itemize}
 \item It’s not true \(\frown \)
 \end{itemize}

 \item First try: is previous lower bound for $E_{\leq k}(D)$ true for any interesting family of drawings of K_n?

 \item 2-page drawings:
 \begin{itemize}
 \item vertices on a line
 \item edges in one of the halfplanes
 \end{itemize}

 \item Examples of 2-page drawings of K_n with $Z(n)$ crossings already known.
 [Blažek-Koman, 1964]
\end{itemize}
2-page drawings

* Even for 2-page drawings, it is not true that

\[E_{\leq k} \geq 3 \binom{k + 2}{2}. \]
2-page drawings

* Even for 2-page drawings, it is not true that

\[E_{\leq k} \geq 3 \binom{k + 2}{2}. \]
Even for 2-page drawings, it is \textbf{not true} that

\[E_{\leq k} \geq 3 \binom{k + 2}{2}. \]
Even for 2-page drawings, it is **not true** that

\[E_{\leq k} \geq 3 \binom{k + 2}{2}. \]

Idea: average again, and consider \((\leq \leq k)\)-edges:

\[E_{\leq \leq k} = \sum_{j=0}^{k} E_{\leq j} \]
2-page drawings

* Even for 2-page drawings, it is not true that
\[E_{\leq k} \geq 3 \binom{k + 2}{2}. \]

* Idea: average again, and consider \((\leq \leq k) \)-edges:

\[E_{\leq \leq k} = \sum_{j=0}^{k} E_{\leq j} \]

\[\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq \leq k}(D) + c_n \]
Optimal lower bounds

\[E_{\leq k}(D) \geq 3 \binom{k + 3}{3} \implies \nu_2(K_n) = Z(n) \]
Optimal lower bounds

\[E_{\leq k}(D) \geq 3 \binom{k+3}{3} \Rightarrow \nu_2(K_n) = Z(n) \]

* Soon after, the main idea in the proof was simplified and extended to monotone drawings.

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]
[Balko, Fulek, Kynčl, 2013]
Optimal lower bounds

 \[E_{\leq k}(D) \geq 3 \binom{k + 3}{3} \implies \nu_2(K_n) = Z(n) \]

- Soon after, the main idea in the proof was simplified and extended to **monotone drawings**.
 [Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]
 [Balko, Fulek, Kynčl, 2013]

- **Monotone drawing:**
 - vertices on a line and edges monotone (w.r.t. that line)
Optimal lower bounds

\[E_{\leq k}(D) \geq 3 \binom{k + 3}{3} \Rightarrow \nu_2(K_n) = Z(n) \]

* Soon after, the main idea in the proof was simplified and extended to **monotone drawings**.

[Ábrego, Aichholzer, Fernández-Merchant, R., Salazar, 2013]
[Balko, Fulek, Kynčl, 2013]

* **Monotone drawing:**
 * vertices on a line and edges monotone (w.r.t. that line)

* In the rest of the talk, sketch of the main ideas and a further extension: **t-shellable drawings.**
Main ideas of the proof (for monotone drawings)

* The proof is by induction.

We remove point n, and denote by D' the corresponding drawing of K_{n-1}.
Main ideas of the proof (for monotone drawings)

* The proof is by induction.
 We remove point n, and denote by D' the corresponding drawing of K_{n-1}.

* $E_{\leq k}(D) = E_{\leq k-1}(D') + 2\left(\frac{k}{2} + 2\right) + E_{\leq k}(D, D')$

induction hypothesis
The proof is by induction.

We remove point n, and denote by D' the corresponding drawing of K_{n-1}.

$$E_{\leq k}(D) = E_{\leq k-1}(D') + 2\binom{k+2}{2} + E_{\leq k}(D, D')$$

From now on, we consider unoriented j-edges.

Consider always the “light” side $(j \leq n/2 - 1)$.
Main ideas of the proof (for monotone drawings)

* The proof is by induction.

We remove point n, and denote by D' the corresponding drawing of K_{n-1}.

* $E_{\leq k}(D) = E_{\leq k-1}(D') + 2\binom{k+2}{2} + E_{\leq k}(D, D')$

 induction hypothesis

 \begin{align*}
 &j\text{-edges adjacent to } n \quad j = 0, \ldots, k \\
 &\text{invariant } \leq k\text{-edges}
 \end{align*}

* A j-edge of D' is an $\leq k$-invariant edge if it is also a j-edge of D (and $j \leq k$).

So an edge is invariant if vertex n lies on the “heavy side” of the edge.
Finding invariant edges

* Consider the edges starting at i and order them vertically.

\[i - 1 \rightarrow i \rightarrow \cdots \rightarrow \leq (i - 1) \text{-edge of } D' \]
Finding invariant edges

* Consider the edges starting at \(i \) and order them vertically.

\[
\leq (i - 1)\text{-edge of } D' \\
\leq i\text{-edge of } D' \\
\leq i\text{-edge of } D' \\
\leq (i - 1)\text{-edge of } D'
\]
Finding invariant edges

* Consider the edges starting at \(i \) and order them vertically.

* The \(m \text{-th edge} \) in the top-down order, is an \(\leq (i + m - 2) \text{-edge} \) (while \(i + m - 2 \leq n/2 - 1 \)).

The same is true for the bottom-up order.
Finding invariant edges

* Are there enough invariant edges?
Finding invariant edges

* Are there enough invariant edges?
Finding invariant edges

Are there enough invariant edges?

Sweep (top-down and bottom-up) edges starting at i: all the edges that we find before reaching i_{n} (or half of the edges) are invariant.
Finding invariant edges

* **Invariant \(\leq k\)-edges** starting at \(i\). At least

\[
\begin{align*}
\text{one } \leq (i - 1)\text{-edge} \\
\text{one } \leq i\text{-edge} \\
\vdots \\
\text{one } \leq k\text{-edge}
\end{align*}
\]

\(k - i + 2\) invariant \(\leq k\)-edges starting at vertex \(i\).
Finding invariant edges

* **Invariant $\leq k$-edges** starting at i. At least

 one $\leq (i - 1)$-edge

 one $\leq i$-edge

 \vdots

 one $\leq k$-edge

 $k - i + 2$ invariant $\leq k$-edges

 starting at vertex i.

* Considering $i = 1, \ldots, k$, we get

$$E_{\leq k}(D, D') \geq \binom{k + 2}{2}$$
Finding invariant edges

* **Invariant \(\leq k \)-edges** starting at \(i \). At least

\[
\begin{align*}
\text{one} & \leq (i - 1)\text{-edge} \\
\text{one} & \leq i\text{-edge} \\
\vdots \\
\text{one} & \leq k\text{-edge}
\end{align*}
\]

\(\begin{array}{c} \text{k} - i + 2 \text{ invariant } \leq k\text{-edges} \\
\text{starting at vertex } i. \end{array} \)

* Considering \(i = 1, \ldots, k \), we get

\[
E_{\leq k}(D, D') \geq \binom{k + 2}{2}
\]

\[
E_{\leq \leq k}(D) = E_{\leq \leq k-1}(D') + 2 \binom{k + 2}{2} + E_{\leq k}(D, D')
\]

\[
\geq 3 \binom{k + 2}{3} + 2 \binom{k + 2}{2} + \binom{k + 2}{2}
\]
Finding invariant edges

* **Invariant \(\leq k \)-edges** starting at \(i \). At least

 one \(\leq (i - 1) \)-edge
 one \(\leq i \)-edge
 \(\vdots \)
 one \(\leq k \)-edge

\[
\begin{align*}
E_{\leq k}(D, D') &\geq \binom{k + 2}{2} \\
E_{\leq k}(D) &= E_{\leq k-1}(D') + 2\binom{k + 2}{2} + E_{\leq k}(D, D') \\
&\geq 3\binom{k + 2}{3} + 2\binom{k + 2}{2} + \binom{k + 2}{2}
\end{align*}
\]

* Considering \(i = 1, \ldots, k \), we get \(E_{\leq k}(D, D') \geq \binom{k + 2}{2} \)
Finding invariant edges

* **Invariant \(\leq k \)-edges** starting at \(i \). At least

\[
\begin{align*}
\text{one} & \leq (i - 1)\text{-edge} \\
\text{one} & \leq i\text{-edge} \\
& \vdots \\
\text{one} & \leq k\text{-edge}
\end{align*}
\]

\(k - i + 2 \) invariant \(\leq k \)-edges starting at vertex \(i \).

* Considering \(i = 1, \ldots, k \), we get

\[
E_{\leq k}(D, D') \geq \binom{k + 2}{2}
\]

\[
E_{\leq \leq k}(D) = E_{\leq \leq k-1}(D') + 2 \binom{k + 2}{2} + E_{\leq k}(D, D') \\
\geq 3 \binom{k + 2}{3} + 2 \binom{k + 2}{2} + \binom{k + 2}{2} = 3 \binom{k + 3}{3}
\]
Lower bound

* Using \(\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq k}(D) + c_n \)

\[
E_{\leq k}(D) \geq 3 \binom{k + 3}{3} \Rightarrow \text{cr}(D) \geq Z(n)
\]
Lower bound

* Using \(\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 3} E_{\leq k}(D) + c_n \)

\[
E_{\leq k}(D) \geq 3 \binom{k + 3}{3} \Rightarrow \text{cr}(D) \geq Z(n)
\]

* What properties of monotone drawings are we really using in the proof?
Shellable drawings

* Only that vertices i and n are on the boundary of the drawing obtained when vertices $1, 2, \ldots, i - 1$ are deleted.

boundary of D: boundary of the unbounded face

Vertex $n - 1$ is also on the boundary when vertex n is deleted, and so on.
Shellable drawings

* Only that vertices i and n are on the boundary of the drawing obtained when vertices 1, 2, \ldots, $i - 1$ are deleted.

boundary of D: boundary of the unbounded face

* Of course, there is nothing special with the unbounded face: we can take any face of the drawing and convert it the unbounded one.
Shellable drawings

* Only that vertices i and n are on the boundary of the drawing obtained when vertices $1, 2, \ldots, i - 1$ are deleted. boundary of D: boundary of the unbounded face

* Of course, there is nothing special with the unbounded face: we can take any face of the drawing and convert it the unbounded one.

* For $1 \leq i < j \leq t$, let D_{ij} be the drawing obtained from D by removing vertices $\{v_1, \ldots, v_{i-1}, v_{j+1}, \ldots, v_t\}$.

A drawing D of K_n is t-shellable if there exists a subset of vertices $S = \{v_1, v_2, \ldots, v_t\}$ and a face F such that for all $1 \leq i < j \leq t$ vertices v_i and v_j are on the boundary of the face of D_{ij} containing F.
t-shellable drawings

Examples:
- monotone drawings are n-shellable.
- x-bounded drawings are n-shellable.
t-shellable drawings

Examples:

- monotone drawings are \(n \)-shellable.
- \(x \)-bounded drawings are \(n \)-shellable.
t-shellable drawings

* **Examples:**
 * monotone drawings are n-shellable.
 * x-bounded drawings are n-shellable.

* **Theorem:** If a drawing D of K_n is t-shellable then

\[
E_{\leq k}(D) \geq 3 \binom{k + 3}{3}
\]

for all $k \leq t - 2$.
t-shellable drawings

* Examples:
 * monotone drawings are n-shellable.
 * x-bounded drawings are n-shellable.

* Theorem: If a drawing D of K_n is t-shellable then

 $E_{\leq k}(D) \geq 3 \binom{k+3}{3}$

 for all $k \leq t - 2$.

* Theorem: If a drawing D of K_n is t-shellable for some $t \geq n/2$ then $cr(D) \geq Z(n)$.
Cylindrical drawings

A drawing is **cylindrical** if it contains two crossing-free cycles spanning the set of vertices.
Cylindrical drawings

A drawing is **cylindrical** if it contains two crossing-free cycles spanning the set of vertices.
Cylindrical drawings

A drawing is **cylindrical** if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen’97]
Cylindrical drawings

A drawing is cylindrical if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen’97]

* Any cylindrical drawing of K_n is $n/2$-shellable.
Cylindrical drawings

A drawing is **cylindrical** if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen’97]

* Any cylindrical drawing of K_n is $n/2$-shellable.
Cylindrical drawings

A drawing is **cylindrical** if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen’97]

\[t \geq \frac{n}{2} \]

* Any cylindrical drawing of \(K_n \) is \(\frac{n}{2} \)-shellable.
Cylindrical drawings

A drawing is \textit{cylindrical} if it contains two crossing-free cycles spanning the set of vertices.

Partial results for equal size sets [Richter-Thomassen’97]

\[t \geq n/2 \]

* Any cylindrical drawing of \(K_n \) is \(n/2 \)-shellable.

* The number of crossings in any cylindrical drawing of \(K_n \) is at least \(Z(n) \).
Conclusions

* Two known families of optimal drawings:
 ▶ 2-page drawings
 ▶ cylindrical drawings

Lower bound known for those families.
Conclusions

* Two known families of optimal drawings:
 ▶ 2-page drawings
 ▶ cylindrical drawings

 Lower bound known for those families.

* Open problems:
 ▶ other families of optimal drawings?
 ▶ prove that they are really optimal!
Shellable drawings and the crossing number of the complete graph

Thank you for your attention.