A Polyhedral Proof of the Matrix-Tree Theorem

Aaron Dall
(University of Technology, Barcelona)

joint work with

Julian Pfeifle
(University of Technology, Barcelona)

EuroGIGA Final Conference 2014 Berlin
The Matrix-Tree Theorem

- $G = (V, E)$ connected graph on n vertices; undirected

![Graph diagram with vertices 1, 2, and 3 connected by edges]

Aaron Dall, Julian Pfeifle (UPC)
The Matrix-Tree Theorem

- $G = (V, E)$ connected graph on n vertices; directed arbitrarily

![Diagram](1-2-3)
The Matrix-Tree Theorem

- $G = (V, E)$ connected graph on n vertices; directed arbitrarily

![Directed Graph Diagram]

- Incidence matrix

$$
N = \begin{bmatrix}
1 & e_1 & e_2 \\
2 & -1 & 1 \\
3 & 1 & -1 \\
3 & 1 & 1
\end{bmatrix}
$$
The Matrix-Tree Theorem

- \(G = (V, E) \) connected graph on \(n \) vertices; directed arbitrarily

\[
\begin{array}{ccc}
1 & \rightarrow & 2 \\
& \rightarrow & \\
& 3 &
\end{array}
\]

- Incidence matrix \(N = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \); depends on orientation
The Matrix-Tree Theorem

- \(G = (V, E) \) connected graph on \(n \) vertices; directed arbitrarily

\[1 \rightarrow 2 \rightarrow 3 \]

- Incidence matrix \(N = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \); depends on orientation

- Laplacian Matrix

\[
L = NN^\top = \begin{bmatrix}
\deg v_1 & -1 & \cdots & -1 \\
-1 & \deg v_2 & \cdots & -1 \\
-1 & \cdots & \deg v_n
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]
The Matrix-Tree Theorem

- $G = (V, E)$ connected graph on n vertices; directed arbitrarily

![Graph](image)

- Incidence matrix $N = \begin{bmatrix} -1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$; depends on orientation

- Laplacian Matrix $L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$; independent of orientation
The Matrix-Tree Theorem

- \(G = (V, E) \) connected graph on \(n \) vertices; directed arbitrarily

\[\begin{array}{ccc}
1 & \rightarrow & 2 \\
\rightarrow & & \rightarrow \\
2 & \rightarrow & 3
\end{array} \]

- Incidence matrix \(N = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \); depends on orientation

- Laplacian Matrix \(L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \); independent of orientation

Theorem (Kirchhoff 1847)

- If \(G \) has \(s \) spanning trees, and
- \(\text{Spec } L = \{0, \lambda_1, \ldots, \lambda_{n-1}\} \),

then \(n \cdot s = \lambda_1 \cdots \lambda_{n-1} \).
The Matrix-Tree Theorem

- \(G = (V, E) \) connected graph on \(n \) vertices; directed arbitrarily

- Incidence matrix \(N = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \); depends on orientation

- Laplacian Matrix \(L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \); independent of orientation

Theorem (Kirchhoff 1847)

- If \(G \) has \(s \) spanning trees, and
- Spec \(L = \{0, \lambda_1, \ldots, \lambda_{n-1}\} \),

then \(n \cdot s = \lambda_1 \cdots \lambda_{n-1} \).

In the example: \(3 \cdot 1 = 1 \cdot 3 \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_v \text{column of } A \text{ conv}\{0, v\} \]

The segments \(\text{conv}\{0, N_i(K_3)\} \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_v \text{column of } A \, \text{conv}\{0, v\} \]

The segments \(\text{conv}\{0, N_i(K_3)\} \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_v \text{column of } A \text{ conv} \{0, v\} \]

Zonotope generated by \(N_1 \) & \(N_2 \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_v \text{column of } A \text{ conv} \{0, v\} \]

Zonotope generated by \(N_1 \) & \(N_2 \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_{v \text{ column of } A} \text{conv}\{0, v\} \]

The cells corresponding to bases of \(N \)
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)

\[Z(A) = \sum_v \text{column of } A \, \text{conv}\{0, v\} \]

The zonotope of N and of L
A Geometric Reformulation: Zonotopes

Definition (The zonotope generated by the columns of a matrix)
\[Z(A) = \sum_v \text{column of } A \ \text{conv} \{0, v\} \]

Theorem (Polyhedral Matrix Tree Theorem)
\[G \text{ connected on } n \text{ vertices} \implies \text{vol} Z(L) = n \text{vol} Z(N). \]
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

Oriented Graphs
- \(\ker N \)
 - cycle space
- \(\text{im} N \top \)
 - cut space

Oriented Matroids
- \(R \)-span of (oriented) circuits
- \(R \)-span of (oriented) cocircuits

oriented matroid orthogonality
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Graphs**

- **Oriented Matroids**
 - \mathbb{R}-span of (oriented) circuits
 - \mathbb{R}-span of (oriented) cocircuits
 - oriented matroid orthogonality
Graphs
- spanning forest
- spanning tree
- cycle
- minimal cut

Matroids
- independent set
- basis (max. independent set)
- circuit (min. dependent set)
- cocircuit

Oriented Graphs
- \(\ker \mathbf{N} = \) cycle space

Oriented Matroids
- R-span of (oriented) circuits
- R-span of (oriented) cocircuits
- oriented matroid orthogonality
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Oriented Graphs**
 - \(\ker N = \) cycle space
 - \(\text{im } N^T = \) cut space

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Matroids**
 - \(\mathbb{R}\)-span of (oriented) circuits
 - \(\mathbb{R}\)-span of (oriented) cocircuits
 - oriented matroid orthogonality
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Oriented Graphs**
 - \(\ker N = \) cycle space
 - \(\text{im } N^T = \) cut space
 - linear orthogonality

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Matroids**
 - \(\mathbb{R} \)-span of (oriented) circuits
 - \(\mathbb{R} \)-span of (oriented) cocircuits
 - oriented matroid orthogonality
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Graphs**
 - \(\ker N = \) cycle space
 - \(\text{im } N^\top = \) cut space
 - linear orthogonality

- **Oriented Matroids**
 - \(\mathbb{R} \)-span of (oriented) circuits
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Graphs**
 - \(\ker \mathbf{N} = \text{cycle space} \)
 - \(\text{im} \mathbf{N}^T = \text{cut space} \)
 - linear orthogonality

- **Oriented Matroids**
 - \(\mathbb{R} \)-span of (oriented) circuits
 - \(\mathbb{R} \)-span of (oriented) cocircuits
From Graphs to Matroids

- **Graphs**
 - spanning forest
 - spanning tree
 - cycle
 - minimal cut

- **Oriented Graphs**
 - $\ker N = \text{cycle space}$
 - $\text{im } N^T = \text{cut space}$
 - linear orthogonality

- **Matroids**
 - independent set
 - basis (max. independent set)
 - circuit (min. dependent set)
 - cocircuit

- **Oriented Matroids**
 - \mathbb{R}-span of (oriented) circuits
 - \mathbb{R}-span of (oriented) cocircuits
 - oriented matroid orthogonality
We want matroids where these notions of orthogonality coincide.
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} regular matroid
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} regular matroid
- \exists a T.U. matrix \mathbf{M} with d rows that represents \mathcal{M} over \mathbb{R}
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} regular matroid
- \exists a T.U. matrix \mathbf{M} with d rows that represents \mathcal{M} over \mathbb{R}
- $\mathbf{Z}(\mathbf{M})$ tiles \mathbb{R}^d

$\mathbf{Z}(\mathbf{M})$
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} is a regular matroid
- \exists a T.U. matrix \mathbf{M} with d rows that represents \mathcal{M} over \mathbb{R}
- $\mathbf{Z}(\mathbf{M})$ tiles \mathbb{R}^d

twice the centers of facets of $\mathbf{Z}(\mathbf{M})$
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} regular matroid
- \exists a T.U. matrix \mathbf{M} with d rows that represents \mathcal{M} over \mathbb{R}
- $\mathbb{Z}(\mathbf{M})$ tiles \mathbb{R}^d
Regular Matroids

For a rank d matroid \mathcal{M}, the following are equivalent:

- \mathcal{M} regular matroid
- \exists a T.U. matrix \mathbf{M} with d rows that represents \mathcal{M} over \mathbb{R}
- $\mathbb{Z}(\mathbf{M})$ tiles \mathbb{R}^d
- the lattice generated by twice the barycenters of facets of $\mathbb{Z}(\mathbf{M})$ coincides with $\mathbb{Z} \langle L \rangle$

The lattice $\mathbb{Z} \langle L \rangle$
Generalization to Regular Matroids

- \mathcal{M} rank d regular (oriented) matroid
Generalization to Regular Matroids

- \mathcal{M} rank d regular (oriented) matroid
 - \mathbf{M} a rank d totally unimodular representation of \mathcal{M} over \mathbb{R}
Generalization to Regular Matroids

- \mathcal{M} rank d regular (oriented) matroid
 - \mathbf{M} a rank d totally unimodular representation of \mathcal{M} over \mathbb{R}
 - $\mathbf{L} = \mathbf{M}\mathbf{M}^T$
Generalization to Regular Matroids

- \mathcal{M} rank d regular (oriented) matroid
 - \mathbf{M} a rank d totally unimodular representation of \mathcal{M} over \mathbb{R}
 - $\mathbf{L} = \mathbf{M} \mathbf{M}^T$

Theorem (Regular Matroid MTT)

If \mathcal{M} has b bases, and

- $\text{Spec } \mathbf{L} = \{\lambda_1, \ldots, \lambda_d\}$,

then $b = \lambda_1 \cdots \lambda_d$.
Generalization to Regular Matroids

- \mathcal{M} rank d regular (oriented) matroid

 - \mathbf{M} a rank d totally unimodular representation of \mathcal{M} over \mathbb{R}
 - $\mathbf{L} = \mathbf{MM}^{\top}$

Theorem (Regular Matroid MTT)

If \mathcal{M} has b bases, and $\text{Spec } \mathbf{L} = \{\lambda_1, \ldots, \lambda_d\}$, then $b = \lambda_1 \cdots \lambda_d$.

Theorem (Polyhedral Version)

$\text{vol}(\mathbb{Z}(\mathbf{M})) = \text{vol}(\mathbb{Z}(\mathbf{L}))$
Proof Outline

1 \(\text{vol } \mathbf{Z}(\mathbf{M}) = b \)
Proof Outline

1. \(\text{vol } Z(\mathbf{M}) = b \)

 - Take a maximal cubical subdivision of \(Z(\mathbf{M}) \)

\[
\text{vol } Z(\mathbf{L}) = \lambda_1 \cdots \lambda_d
\]

- The columns of \(\mathbf{L} \) form a basis of \(\mathbb{R}^d \)

\[
\Rightarrow Z(\mathbf{L}) \text{ is a parallelepiped}
\]

\[
\Rightarrow \text{vol } Z(\mathbf{L}) = \det \mathbf{L}
\]

\[
\text{vol } Z(\mathbf{L}) = \text{vol } Z(\mathbf{M}) (= b):	ext{ the hard part}
\]

- "decompose and rearrange" argument
Proof Outline

1. \(\text{vol } Z(M) = b \)

 - Take a maximal cubical subdivision of \(Z(M) \)
 - Use total unimodularity of \(M \)
Proof Outline

1. \(\text{vol } \mathbf{Z}(\mathbf{M}) = b \)
 - Take a maximal cubical subdivision of \(\mathbf{Z}(\mathbf{M}) \)
 - Use total unimodularity of \(\mathbf{M} \)

2. \(\text{vol } \mathbf{Z}(\mathbf{L}) = \lambda_1 \cdots \lambda_d \)
Proof Outline

1. $\text{vol } \mathbf{Z}(\mathbf{M}) = b$
 - Take a maximal cubical subdivision of $\mathbf{Z}(\mathbf{M})$
 - Use total unimodularity of \mathbf{M}

2. $\text{vol } \mathbf{Z}(\mathbf{L}) = \lambda_1 \cdots \lambda_d$
 - the columns of \mathbf{L} form a basis of \mathbb{R}^d
Proof Outline

1. \(\text{vol } \mathbb{Z}(\mathbf{M}) = b \)
 - Take a maximal cubical subdivision of \(\mathbb{Z}(\mathbf{M}) \)
 - Use total unimodularity of \(\mathbf{M} \)

2. \(\text{vol } \mathbb{Z}(\mathbf{L}) = \lambda_1 \cdots \lambda_d \)
 - the columns of \(\mathbf{L} \) form a basis of \(\mathbb{R}^d \)
 - \(\Rightarrow \mathbb{Z}(\mathbf{L}) \) is a parallelepiped
Proof Outline

1. \(\text{vol } Z(M) = b \)
 - Take a maximal cubical subdivision of \(Z(M) \)
 - Use total unimodularity of \(M \)

2. \(\text{vol } Z(L) = \lambda_1 \cdots \lambda_d \)
 - the columns of \(L \) form a basis of \(\mathbb{R}^d \)
 - \(\Rightarrow Z(L) \) is a parallelepiped
 - \(\Rightarrow \text{vol}(Z(L)) = \det L \)
Proof Outline

1. $\text{vol } Z(M) = b$
 - Take a maximal cubical subdivision of $Z(M)$
 - Use total unimodularity of M

2. $\text{vol } Z(L) = \lambda_1 \cdots \lambda_d$
 - the columns of L form a basis of \mathbb{R}^d
 - $\Rightarrow Z(L)$ is a parallelepiped
 - $\Rightarrow \text{vol}(Z(L)) = \det L$

3. $\text{vol } Z(L) = \text{vol } Z(M) (= b)$: the hard part
Proof Outline

1. \(\text{vol } Z(M) = b \)
 - Take a maximal cubical subdivision of \(Z(M) \)
 - Use total unimodularity of \(M \)

2. \(\text{vol } Z(L) = \lambda_1 \cdots \lambda_d \)
 - the columns of \(L \) form a basis of \(\mathbb{R}^d \)
 - \(\implies Z(L) \) is a parallelepiped
 - \(\implies \text{vol}(Z(L)) = \det L \)

3. \(\text{vol } Z(L) = \text{vol } Z(M) (= b) \): the hard part
 - “decompose and rearrange” argument
Proof of the hard part: \(\text{vol} \mathbb{Z}(L) = \text{vol} \mathbb{Z}(M) \)

Proof idea:

- Tile \(\mathbb{R}^d \) with the parallelepiped \(\mathbb{Z}(L) \)
- Cut up \(\mathbb{Z}(M) \) into parts by these cells
- Reassemble the parts inside one of the cells
Decomposition of $\mathbb{Z}_0(M)$ by $\mathbb{Z}(L)$

$\mathbb{Z}_0(M) := \mathbb{Z}(M) - \beta(\mathbb{Z}(M))$
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$

- Decompose \mathbb{R}^d into cones
 \[\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle, \varepsilon \in \{-1, 1\}^d\]
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$

- Decompose \mathbb{R}^d into cones
 $\sigma_\epsilon = \mathbb{R}_+ \langle \epsilon_i L_i \rangle$, $\epsilon \in \{-1, 1\}^d$
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$

- Decompose \mathbb{R}^d into cones
 \[\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle, \varepsilon \in \{-1, 1\}^d \]

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

Decompose \mathbb{R}^d with $Z(L)$
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$

- Decompose \mathbb{R}^d into cones $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle$, $\varepsilon \in \{-1, 1\}^d$

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

- Set $P_\varepsilon = Z_0(M) \cap \sigma_\varepsilon$

The P_ε
De composition of $Z_0(M)$ by $Z(L)$

$Z_0(M) := Z(M) - \beta(Z(M))$

Decompose \mathbb{R}^d into cones

$\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle, \varepsilon \in \{-1, 1\}^d$

Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

Set $P_\varepsilon = Z_0(M) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$Z(L) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$

- Decompose \mathbb{R}^d into cones
 $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle$, $\varepsilon \in \{-1, 1\}^d$

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

- Set $P_\varepsilon = Z_0(M) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$Z(L) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
Decomposition of $\mathbb{Z}_0(\mathbb{M})$ by $\mathbb{Z}(\mathbb{L})$

- $\mathbb{Z}_0(\mathbb{M}) := \mathbb{Z}(\mathbb{M}) - \beta(\mathbb{Z}(\mathbb{M}))$
- Decompose \mathbb{R}^d into cones $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i \mathbb{L}_i \rangle$, $\varepsilon \in \{-1, 1\}^d$
- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} \mathbb{L}_i$
- Set $P_\varepsilon = \mathbb{Z}_0(\mathbb{M}) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)
$\mathbb{Z}(\mathbb{L}) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$

$P_{+-} + \mathbb{L}_2$
Decomposition of $\mathbf{Z}_0(\mathbf{M})$ by $\mathbf{Z}(\mathbf{L})$

- $\mathbf{Z}_0(\mathbf{M}) := \mathbf{Z}(\mathbf{M}) - \beta(\mathbf{Z}(\mathbf{M}))$

- Decompose \mathbb{R}^d into cones
 \[\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i \mathbf{L}_i \rangle, \; \varepsilon \in \{-1, 1\}^d \]

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} \mathbf{L}_i$

- Set $P_\varepsilon = \mathbf{Z}_0(\mathbf{M}) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

\[\mathbf{Z}(\mathbf{L}) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon \]
Decomposition of $Z_0(M)$ by $Z(L)$

- $Z_0(M) := Z(M) - \beta(Z(M))$
- Decompose \mathbb{R}^d into cones
 $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle$, $\varepsilon \in \{-1, 1\}^d$
- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$
- Set $P_\varepsilon = Z_0(M) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$Z(L) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
Decomposition of $\mathbb{Z}_0(M)$ by $\mathbb{Z}(L)$

- $\mathbb{Z}_0(M) := \mathbb{Z}(M) - \beta(\mathbb{Z}(M))$

- Decompose \mathbb{R}^d into cones
 $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle$, $\varepsilon \in \{-1, 1\}^d$

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

- Set $P_\varepsilon = \mathbb{Z}_0(M) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$\mathbb{Z}(L) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
Decomposition of $Z_0(M)$ by $Z(L)$

- **$Z_0(M) := Z(M) - \beta(Z(M))$**

- Decompose \mathbb{R}^d into cones
 \[\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i L_i \rangle, \varepsilon \in \{-1, 1\}^d \]

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} L_i$

- Set $P_\varepsilon = Z_0(M) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$Z(L) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$

$$P_{--} + L_1 + L_2$$
Decomposition of $\mathbf{Z}_0(\mathbf{M})$ by $\mathbf{Z}(\mathbf{L})$

- $\mathbf{Z}_0(\mathbf{M}) := \mathbf{Z}(\mathbf{M}) - \beta(\mathbf{Z}(\mathbf{M}))$
- Decompose \mathbb{R}^d into cones
 $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i \mathbf{L}_i \rangle$, $\varepsilon \in \{-1, 1\}^d$
- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} \mathbf{L}_i$
- Set $P_\varepsilon = \mathbf{Z}_0(\mathbf{M}) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$\mathbf{Z}(\mathbf{L}) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
Decomposition of $\mathbf{Z}_0(\mathbf{M})$ by $\mathbf{Z}(\mathbf{L})$

- $\mathbf{Z}_0(\mathbf{M}) := \mathbf{Z}(\mathbf{M}) - \beta(\mathbf{Z}(\mathbf{M}))$

- Decompose \mathbb{R}^d into cones
 $\sigma_\varepsilon = \mathbb{R}_+ \langle \varepsilon_i \mathbf{L}_i \rangle$, $\varepsilon \in \{-1, 1\}^d$

- Set $\mu_\varepsilon = \sum_{\varepsilon_i = -1} \mathbf{L}_i$

- Set $P_\varepsilon = \mathbf{Z}_0(\mathbf{M}) \cap \sigma_\varepsilon$

Theorem (D.-Pfeifle)

$\mathbf{Z}(\mathbf{L}) = \bigcup_\varepsilon P_\varepsilon + \mu_\varepsilon$
\textbf{Z(M) for } G = K_4
$\mathbb{Z}(M)$ with the $\pm L_i$
The Polytopes P_ϵ
The Polytopes P_ϵ
The Polytopes P_e
Shifting P_ϵ by μ_ϵ
Shifting P_ε by μ_ε
Shifting P_ϵ by μ_ϵ
Shifting P_ϵ by μ_ϵ
$Z(L)$ for $G = K_4$
Thank You!