Intersection Graphs and Order Dimension

Feb. 17. 2014
EuroGIGA Final
Berlin

Stefan Felsner
Technische Universität Berlin
Outline

Introduction
Dimension of Orders
Containment Orders and Dimension
Triangle Containment and Planar Graphs

Intersection Orders
Grid Intersection Graphs (GIG)
Subclasses of GIGs

The Brightwell-Trotter Theorem Made Easy
Splits of Orders
Segment Contact Representations of Graphs
The Proof
A linear extension of $P = (X, <)$ is a linear order L, such that

- $x <_P y \implies x <_L y$
A family \mathcal{L} of linear extensions is a realizer for $P = (X, <)$ provided that

* for every incomparable pair (x, y) there is an $L \in \mathcal{L}$ such that $x < y$ in L.

The dimension, $\dim(P)$, of P is the minimum t, such that there is a realizer $\mathcal{L} = \{L_1, L_2, \ldots, L_t\}$ for P of size t.

Dimension of Orders I
The dimension of an order \(P = (X, <) \) is the least \(t \), such that \(P \) is isomorphic to a suborder of \(\mathbb{R}^t \) with the product ordering.
Containment Orders and Dimension

- Containment orders of intervals — dimension \(\leq 2 \).
- Containment orders of triangles* — dimension \(\leq 3 \).
- Containment orders of \(n \)-gons* — dimension \(\leq n \).
- Containment orders of \(k \)-boxes — dimension \(\leq 2k \).

*prescribed slopes
Incidence Orders of Planar Maps

The incidence order of vertices, edges, and faces $P_{VEF}(G)$ of a plane graph G.

- If G is 3-connected $P_{VEF}(G)$ is the truncated face lattice of the corresponding 3-polytope (Steinitz).
Theorem [Schnyder 1989].
If G is a plane triangulation with a face F, then

\begin{itemize}
 \item $\dim(P_{VEF}(G \setminus F)) = 3$
 \item $\dim(P_{VEF}(G)) = 4$
\end{itemize}
Incidence Orders of Planar Maps

The embedded incidence orders $P_{VE}(G)$ and $P_{VEF}(G \setminus F)$ with the graph G.

![Diagram of incidence orders](image-url)
Introduction
Dimension of Orders
Containment Orders and Dimension
Triangle Containment and Planar Graphs

Intersection Orders
Grid Intersection Graphs (GIG)
Subclasses of GIGs

The Brightwell-Trotter Theorem Made Easy
Splits of Orders
Segment Contact Representations of Graphs
The Proof
A bipartite Graph can be viewed as a height 2 order.

- We can talk about $\dim(G)$ when G is bipartite.
Grid Intersection Graphs

A **GIG** is an intersection graphs of horizontal and vertical segments.

- GIGs are bipartite.
In each projection **minimals** are taken early, **maximals** are taken late.

Theorem. G a GIG, then $\dim(G) \leq 4$.

Dimension of GIGs
Theorem [generalization]. If a bipartite graph $G = (X, Y; E)$ has a representation as intersection graphs of objects from a t-separable class, then $\dim(G) \leq 2t$.

- In each projection, **minimals** are taken early, **maximals** are taken late.

Theorem. G a GIG, then $\dim(G) \leq 4$.
Subclasses of GIGs
Subclasses of GIGs - The Inclusion Order

- GIG
- 3-DORG
- UGIG
- SegRay
- StabGIG
- Stick
- 4-DORG
- Bipartite permutation

- Planar
- Outerplanar
- 3-dimensional
- 4-dimensional
SegRay graphs

For interval dimension we only care of \textit{min-max} pairs.
The interval dimension of a SegRay graph is at most 3.
Outerplanar vertex-face as SegRay

Diagram of a outerplanar graph with vertices labeled from 1 to 9 and edges connecting them.
Outerplanar vertex-face as SegRay
Outerplanar vertex-face as SegRay

- Iterate using leaves of the dual tree
Outerplanar vertex-face as SegRay
Outerplanar vertex-face as SegRay
Dimension of SegRay graphs

- Vertex-face posets of outerplanar maps are SegRay graphs.

Theorem (F. and Nilsson 2006)
There are outerplanar maps with a 4-dimensional vertex-face poset.

Corollary
There are SegRay graphs of dimension 4.

Corollary
The interval dimension of a vertex-face poset of an outerplanar map is 3.
Introduction

Dimension of Orders
Containment Orders and Dimension
Triangle Containment and Planar Graphs

Intersection Orders

Grid Intersection Graphs (GIG)
Subclasses of GIGs

The Brightwell-Trotter Theorem Made Easy

Splits of Orders
Segment Contact Representations of Graphs
The Proof
Theorem [Brightwell+Trotter ’93]. If \(G \) is a 3-connected plane graph with a face \(F \), then

\[
\begin{align*}
\dim(P_{VEF}(G \setminus F)) &= 3 \\
\dim(P_{VEF}(G)) &= 4
\end{align*}
\]
Theorem [Brightwell+Trotter ’97]. If G is a plane multi-graph with loops, then

$$\dim(P_{VEF}(G)) \leq 4.$$
The split of $P = (X, <)$ is $\text{split}(P) = (X', \cup X'', <_s)$ with $x' <_s y''$ iff $x \leq y$.

Theorem [Kimble 78].

$\dim(P) \leq \dim(\text{split}(P)) \leq \dim(P) + 1.$
Planar Bipartite Graphs

Theorem [Hartman-Newman-Ziv ’91 and de Fraysseix-Ossona de Mendez-Pach ’95].

Every planar bipartite graph H admits a contact representation with interiorly disjoint horizontal and vertical segments.
Angle Graphs of Planar Graphs

- Angle graphs are planar bipartite.
- They are the comparability graphs of vertex-face posets.
The First Step

\[G \] 2-connected plane multi-graph (no loops).

- The order dimension of \(P_{VF}(G) \), the incidence order of vertices and faces of a planar multigraph \(G \) (no loops) is at most four, moreover \(\text{dim}(\text{split}(P_{VF}(G))) \leq 4 \).
Theorem. If G is a 2-connected and plane multigraph, then $\dim(\text{split}(P_{VEF}(G))) \leq 4$.
Loops

- Break loops by inserting a new vertex.

\(\text{split}(P_{\text{VEF}}(G)) \) is a suborder of \(\text{split}(P_{\text{VEF}}(G^+)) \)
Cut Vertices

- Use induction: break G into G_1 and G_2 at a cut vertex:

Theorem. If G is a plane multigraph -loops allowed-, then \(\dim(\text{split}(P_{VEF}(G))) \leq 4 \).
The End

Thank You