New Results on Geodesic and Abstract Voronoi Diagrams

Cecilia Bohler, Rolf Klein, and Chih-Hung Liu

Bonn University, Institute of Computer Science I
Work partially supported by EuroGIGA Voronoi

EuroGIGA Final Conference, Berlin, February 20, 2014
Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision:

1. Each region associated with one site $p \in S$ and denoted by $\text{VR}(p, S)$
2. For each point $x \in \text{VR}(p, S)$, p is its nearest site in S
Voronoi Diagram

- Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision
 1. Each region associated with one site $p \in S$ and denoted by $VR(p, S)$
 2. For each point $x \in VR(p, S)$, p is its nearest site in S
Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision.

1. Each region associated with one site $p \in S$ and denoted by $VR(p, S)$
2. For each point $x \in VR(p, S)$, p is its nearest site in S
Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision:

1. Each region associated with one site $p \in S$ and denoted by $\text{VR}(p, S)$.
2. For each point $x \in \text{VR}(p, S)$, p is its nearest site in S.

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision.

1. Each region associated with one site $p \in S$ and denoted by $VR(p, S)$
2. For each point $x \in VR(p, S)$, p is its nearest site in S
Given a set S of n point sites on the plane, the Voronoi Diagram $V(S)$ is a planar subdivision:

1. Each region associated with one site $p \in S$ and denoted by $VR(p, S)$.
2. For each point $x \in VR(p, S)$, p is its nearest site in S.

$VR(p, S)$ is the locus of points closer to p than to any other site.
A **Voronoi edge** is the common boundary between two adjacent Voronoi regions.
A **Voronoi edge** is the common boundary between two adjacent Voronoi regions
- e is part of the bisector $B(p, q)$ between p and q
Voronoi Edge and Voronoi Vertex

- A **Voronoi edge** is the common boundary between two adjacent Voronoi regions
 - e is part of the bisector $B(p, q)$ between p and q
- A **Voronoi vertex** is the common vertex among more than two Voronoi regions
\(k^{th}\)-order Voronoi Diagram

- Given a set \(S \) of \(n \) point sites on the plane, \(k^{th}\)-order Voronoi Diagram \(V_k(S) \) is a planar subdivision
 1. Each region is associated with one \(k \)-element subset \(H \subset S \) and is denoted by \(VR_k(H, S) \)
 2. For each point \(x \in VR_k(H, S) \), \(H \) are its \(k \) nearest sites in \(S \)
Given a set S of n point sites on the plane, the k^{th}-order Voronoi Diagram $V_k(S)$ is a planar subdivision. Each region is associated with one k-element subset $H \subset S$ and is denoted by $VR_k(H, S)$. For each point $x \in VR_k(H, S)$, H are its k nearest sites in S.
Given a set S of n point sites on the plane, the k^{th}-order Voronoi Diagram $V_k(S)$ is a planar subdivision:

1. Each region is associated with one k-element subset $H \subset S$ and is denoted by $\text{VR}_k(H, S)$.
2. For each point $x \in \text{VR}_k(H, S)$, H are its k nearest sites in S.
Given a set S of n point sites on the plane, the k^{th}-order Voronoi Diagram $V_k(S)$ is a planar subdivision:

1. Each region is associated with one k-element subset $H \subset S$ and is denoted by $VR_k(H, S)$.
2. For each point $x \in VR_k(H, S)$, H are its k nearest sites in S.

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
k^{th}-order Voronoi Diagram

- Given a set S of n point sites on the plane, k^{th}-order Voronoi Diagram $V_k(S)$ is a planar subdivision

 1. Each region is associated with one k-element subset $H \subset S$ and is denoted by $VR_k(H, S)$
 2. For each point $x \in VR_k(H, S)$, H are its k nearest sites in S
Given a set S of n point sites on the plane, the k^{th}-order Voronoi Diagram $V_k(S)$ is a planar subdivision where:

1. Each region is associated with one k-element subset $H \subset S$ and is denoted by $VR_k(H, S)$.
2. For each point $x \in VR_k(H, S)$, H are its k nearest sites in S.

\[V_{n-1}(S) \]
Euclidean k^{th}-order Voronoi Diagram

- $V_k(S)$ has $O(k(n - k))$ regions (Lee 1982)
 - Deterministic Algorithms
 - $O(nk^2 \log n)$ time (Lee 1982)
 - $O(n^2 \log n + k(n - k) \log^2 n)$ time and $O(k(n - k))$ space or $O(n^2 + k(n - k) \log^2 n)$ time and $O(n^2)$ space (Chazelle and Edelsbrunner 1987)
 - Randomized Algorithms
 - $O(kn^{1+\epsilon})$ time (Clarkson 1987)
 - $O(k(n - k) \log n + n \log^3 n)$ time, $O(n \log n + nk \log k)$ time, and $O(n \log n + nk2^{O(\log^* k)})$ time (Agarwal et al. 1998, Chan 1998 and Ramos 1999)
 - On-Line Algorithms
 - $O(n \log n + nk^3)$ time and $O(nk^2)$ space (Boissonnat et al. 1993)
 - $O(nk^2 + nk \log^2 n)$ time and $O(k(n - k))$ space (Aurenhammer and Schwarzkopf 1992)
Various Voronoi Diagrams

How many common properties do Voronoi diagrams of different geometric objects in different distance metrics share?

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Various Voronoi Diagrams

How many common properties do Voronoi diagrams of different geometric objects in different distance metrics share?

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Various Voronoi Diagrams

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Various Voronoi Diagrams

How many common properties do Voronoi diagrams of different geometric objects in different distance metrics share?

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Various Voronoi Diagrams

How many common properties do Voronoi diagrams of different geometric objects in different distance metrics share?

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Various Voronoi Diagrams

- How many common properties do Voronoi diagrams of different geometric objects in different distance metrics share?
Abstract Voronoi diagrams

- Abstract concept of Voronoi diagrams
 - Each site has its own influence on the underlying space
 - A point in the space is assigned to the site with the strongest influence on it.
Abstract Voronoi diagrams

- Abstract concept of Voronoi diagrams
 - Each site has its own influence on the underlying space
 - A point in the space is assigned to the site with the strongest influence on it.

- Abstract Voronoi diagrams (Rolf Kein 1989)
 - A bisecting curve system \mathcal{J} of unclosed Jorden curves
 (instead of concrete geometric sites and distance metrics)
Abstract Voronoi diagrams

- Abstract concept of Voronoi diagrams
 - Each site has its own influence on the underlying space
 - A point in the space is assigned to the site with the strongest influence on it.

- Abstract Voronoi diagrams (Rolf Kein 1989)
 - A bisecting curve system \(\mathcal{J} \) of unclosed Jorden curves
 (instead of concrete geometric sites and distance metrics)

 (A1) For \(\forall S' \subset S \) of size 3, \(\mathbb{R}^2 = \bigcup_{p \in S} \overline{\text{VR}(p, S')} \)

 (A2) For \(\forall S' \subset S \) of size 3, \(\text{VR}(p, S') \) is path-connected
Abstract Voronoi diagrams

- Abstract concept of Voronoi diagrams
 - Each site has its own influence on the underlying space
 - A point in the space is assigned to the site with the strongest influence on it.

- Abstract Voronoi diagrams (Rolf Kein 1989)
 - A bisecting curve system \mathcal{J} of unclosed Jorden curves
 (instead of concrete geometric sites and distance metrics)
 (A1) For $\forall S' \subset S$ of size 3, $\mathbb{R}^2 = \bigcup_{p \in S} \overline{\text{VR}(p, S')}$
 (A2) For $\forall S' \subset S$ of size 3, $\text{VR}(p, S')$ is path-connected
 - A category of Voronoi diagrams
 - Points in any convex distance function
 - Line segments in Euclidean metric
 -
Abstract Voronoi Regions

Bisector $J(p, q)$
Euclidean metric.
Abstract Voronoi Regions

$D(p, q)$

$D(q, p)$

$p \bullet$

$q \bullet$

Bisector $J(p, q)$

A Jorden Curve.
Abstract Voronoi Regions

Bisector $J(p, q)$
A Jorden Curve.

Voronoi Region of p:

\[VR(p, S) := \bigcap_{q \in S \setminus \{p\}} D(p, q) \]
Abstract Voronoi Regions

Voronoi Region of p:
$$\text{VR}(p, S) := \bigcap_{q \in S \setminus \{p\}} D(p, q)$$

Voronoi Diagram of S:
$$V(S) := \mathbb{R}^2 \setminus \bigcup_{p \in S} \text{VR}(p, S)$$

Bisector $J(p, q)$
A Jordan Curve.
Known Results

- **Abstract Voronoi diagram** can be computed in $O(n \log n)$ steps
 - Divide and Conquer Algorithm (Klein 1989)
 - Randomized Incremental Construction (Klein, Mehlhorn, Meiser, 1993)
Known Results

- **Abstract Voronoi diagram** can be computed in $O(n \log n)$ steps
 - Divide and Conquer Algorithm (Klein 1989)
 - Randomized Incremental Construction (Klein, Mehlhorn, Meiser, 1993)

- The bisecting system of geometric sites in a distance metric satisfies necessary axioms
 - The corresponding Voronoi diagram is an abstract Voronoi diagram
 - can be computed in $O(n \log n)$ steps.
Four results

- Higher-Order Geodesic Voronoi Diagrams in a Polygonal Domain with Holes (SODA 2013)
 - $|V_k(S)| = \Theta(k(n - k) + kc)$, # of faces = $\Theta(k(n - k) + kh)$
 - $c =$ # of polygonal vertices, $h =$ # of holes

- On the Complexity of Higher Order Abstract Voronoi Diagrams (ICALP 2013)
 - The number of faces is at most $2k(n - k)$
 - joint work with Lugano group (P. Cheilaris, E. Papadopoulou, M. Zavershynskyi)

- Abstract Voronoi Diagrams with Disconnected Regions (ISAAC 2013)
 - A randomized incremental algorithm.

- Forest-Like Abstract Voronoi Diagrams in Linear Time (EuroCG 2014)
 - A linear time algorithm for special abstract Voronoi diagrams.
Geodesic Distance in Polygonal Domain

- Polygonal Domain with Holes
 - An outer polygon P and a set \mathcal{H} of h polygonal holes inside P
 - V is the set of polygonal vertices in $\{P\} \cup \mathcal{H}$, and c is $|V|$
Geodesic Distance in Polygonal Domain

- Polygonal Domain with Holes
 - An outer polygon P and a set \mathcal{H} of h polygonal holes inside P
 - V is the set of polygonal vertices in $\{P\} \cup \mathcal{H}$, and c is $|V|$.
- Geodesic distance
 - $d(s, t)$: length of shortest path between them.

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Geodesic Distance in Polygonal Domain

- **Polygonal Domain with Holes**
 - An outer polygon P and a set \mathcal{H} of h polygonal holes inside P
 - V is the set of polygonal vertices in $\{P\} \cup \mathcal{H}$, and c is $|V|$.

- **Geodesic distance**
 - $d(s, t)$: length of shortest path between them.
Geodesic Distance in Polygonal Domain

- Polygonal Domain with Holes
 - An outer polygon P and a set \mathcal{H} of h polygonal holes inside P
 - V is the set of polygonal vertices in $\{P\} \cup \mathcal{H}$, and c is $|V|$.
- Geodesic distance
 - $d(s, t)$: length of shortest path between them
- $|V_1(S)| = O(n + c)$, and $V_1(S)$ has n faces.
Geodesic Distance in Polygonal Domain

- Polygonal Domain with Holes
 - An outer polygon P and a set \mathcal{H} of h polygonal holes inside P
 - V is the set of polygonal vertices in $\{P\} \cup \mathcal{H}$, and c is $|V|$.
- Geodesic distance
 - $d(s, t)$: length of shortest path between them
- $|V_1(S)| = O(n + c)$, and $V_1(S)$ has n faces
- $|V_{n-1}(S)| = \Theta(nc)$, and $V_{n-1}(S)$ has $\Theta(nh)$ faces
- Bae and Chwa, SoCG, 2009
Our Results

- Euclidean (L_p) metric: $|V_k(S)| = O(k(n - k))$
- $|V_1(S)| = O(n)$ and $|V_{n-1}(S)| = O(n)$
Our Results

- Euclidean (L_p) metric: $|V_k(S)| = O(k(n - k))$
 - $|V_1(S)| = O(n)$ and $|V_{n-1}(S)| = O(n)$

- Geodesic distance:
 - Complexity: from $\Theta(n + c)$ to $\Theta(nc)$
 - # of Faces: from $\Theta(n)$ to $\Theta(nh)$
 - How about k^{th}-order?
Our Results

- Euclidean (L_p) metric: $|V_k(S)| = O(k(n - k))$
 - $|V_1(S)| = O(n)$ and $|V_{n-1}(S)| = O(n)$
- Geodesic distance:
 - Complexity: from $\Theta(n + c)$ to $\Theta(nc)$
 - # of Faces: from $\Theta(n)$ to $\Theta(nh)$
 - How about k^{th}-order?

<table>
<thead>
<tr>
<th>Metric</th>
<th># of Regions</th>
<th># of Faces</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>$O(k(n - k))$</td>
<td>$O(k(n - k))$</td>
<td>$O(k(n - k))$</td>
</tr>
<tr>
<td>Geodesic</td>
<td>$O(k(n - k))$</td>
<td>$\Theta(k(n - k) + kh)$</td>
<td>$\Theta(k(n - k) + kc)$</td>
</tr>
</tbody>
</table>
Our Results

- Euclidean (L_p) metric: $|V_k(S)| = O(k(n - k))$
 - $|V_1(S)| = O(n)$ and $|V_{n-1}(S)| = O(n)$
- Geodesic distance:
 - Complexity: from $\Theta(n + c)$ to $\Theta(nc)$
 - # of Faces: from $\Theta(n)$ to $\Theta(nh)$
 - How about k^{th}-order?

- Variation between first and $(n - 1)^{st}$ orders.

<table>
<thead>
<tr>
<th>Metric</th>
<th># of Regions</th>
<th># of Faces</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>$O(k(n - k))$</td>
<td>$O(k(n - k))$</td>
<td>$O(k(n - k))$</td>
</tr>
<tr>
<td>Geodesic</td>
<td>$O(k(n - k))$</td>
<td>$\Theta(k(n - k) + kh)$</td>
<td>$\Theta(k(n - k) + kc)$</td>
</tr>
</tbody>
</table>
Major Differences

1. A Voronoi edge (bisector): $\Theta(c)$ degree-2 vertices
Major Differences

1. A Voronoi edge (bisector): $\Theta(c)$ degree-2 vertices
2. A Voronoi edge (bisector): $\Theta(h)$ disjoint segments
 - i disjoint segments $\rightarrow 2i - 2$ degree-1 vertices.
Major Differences

1. A Voronoi edge (bisector): $\Theta(c)$ degree-2 vertices
2. A Voronoi edge (bisector): $\Theta(h)$ disjoint segments
 - i disjoint segments $\rightarrow 2i - 2$ degree-1 vertices.
3. A Voronoi region: $\Theta(h)$ disjoint faces.

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Major Differences

1. A Voronoi edge (bisector): $\Theta(c)$ degree-2 vertices
2. A Voronoi edge (bisector): $\Theta(h)$ disjoint segments
 - i disjoint segments $\rightarrow 2i - 2$ degree-1 vertices.
3. A Voronoi region: $\Theta(h)$ disjoint faces.

How to handle obstacles?

```
1 •
(1, 2)
(1, 2)
(1, 2)

2 •
(1, 3)
(1, 3)
(1, 3)

3 •
(2, 3)
(2, 3)
(2, 3)
```
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - Points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
- Points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
- Points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
- Points x with $d(x, p) = t$

Circular wavelets (Mitchell, 1996)

If a point u is first hit by a wavelet from v:

u is associated with v

Shortest Path Map (SPM) of p:

A point $u \in SPM_p(v)$'s region

shortest path from u to p must pass through v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
- Points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - If a point u is first hit by a wavelet: propagate a circular wavelet from v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v

![Diagram showing wave propagation and shortest path map]
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
 - If a point u is first hit by a wavelet from v: u is associated with v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
 - If a point u is first hit by a wavelet from v: u is associated with v
- Shortest Path Map (SPM) of p: \mathcal{SPM}_p
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
 - If a point u is first hit by a wavelet from v: u is associated with v
- **Shortest Path Map** (SPM) of p: \mathcal{SPM}_p
 - a point $u \in \mathcal{SPM}_p(v)$ (v's region)
 - shortest path from u to p must pass through v
Continuous Dijkstra Paradigm and Shortest Path Map

- Wavefront W_p from p at time t
 - points x with $d(x, p) = t$
- Circular wavelets (Mitchell, 1996)
 - $v \in V$ is hit by a wavelet: propagate a circular wavelet from v
 - If a point u is first hit by a wavelet from v: u is associated with v
- **Shortest Path Map** (SPM) of p: SPM_p
 - a point $u \in \text{SPM}_p(v)$ (v's region)
 - shortest path from u to p must pass through v
A degree-2 vertex of a bisector $B(p, q)$ results from an edge of SPM_p or SPM_q.

Diagram:

- p
- q
- v_1
- v_2
- v_3
- m_1
- m_2
A degree-2 vertex of a bisector $B(p, q)$ results from an edge of SPM_p or SPM_q.
A degree-2 vertex of a bisector $B(p, q)$ results from an edge of SPM_p or SPM_q.

In different sides of an SPM edge, predecessors are different.

Degree-2 vertices of A Voronoi Edge
Degree-2 vertices of A Voronoi Edge

- A degree-2 vertex of a bisector $B(p, q)$ results from an edge of SPM_p or SPM_q
 - In different sides of an SPM edge, predecessors are different
 - $x \in B(p, q) \cap SPM_p(v_1): v_1$

C. Bohler, R. Klein, and C.-H. Liu
New Results on Geodesic and Abstract Voronoi Diagrams
Degree-2 vertices of A Voronoi Edge

- A degree-2 vertex of a bisector $B(p, q)$ results from an edge of $S\mathcal{PM}_p$ or $S\mathcal{PM}_q$
 - In different sides of an SPM edge, predecessors are different
 - $x \in B(p, q) \cap S\mathcal{PM}_p(v_1): v_1$
 - $x \in B(p, q) \cap S\mathcal{PM}_p(p): p$
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a **degenerate** degree-2 vertex in a hole.
Disconnected Voronoi Edge

- **Two consecutive disjoint segments** of a bisector can be viewed as **connected** to a *degenerate* degree-2 vertex in a hole.
 - A hole is **NOT** entirely visible from a point.
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a **degenerate** degree-2 vertex in a hole.
- A hole is **NOT** entirely visible from a point.
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a **degenerate** degree-2 vertex in a hole
- A hole is **NOT** entirely visible from a point
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a *degenerate* degree-2 vertex in a hole
 - A hole is NOT entirely visible from a point
 - Boundary of a hole belongs to different SPM regions
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a **degenerate** degree-2 vertex in a hole
 - A hole is **NOT** entirely visible from a point
 - Boundary of a hole belongs to different SPM regions

\[\begin{align*}
\mathcal{SPM}_p(p) \\
\mathcal{SPM}_p(v_1) \\
\mathcal{SPM}_p(v_2)
\end{align*} \]
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a degenerate degree-2 vertex in a hole.
- A hole is NOT entirely visible from a point.
- Boundary of a hole belongs to different SPM regions.

\[SP_M_q(v_1) \]
\[SP_M_q(v_2) \]
\[SP_M_q(q) \]
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a degenerate degree-2 vertex in a hole
 - A hole is NOT entirely visible from a point
 - Boundary of a hole belongs to different SPM regions
 - p’s or q’s SPM region changes
Disconnected Voronoi Edge

- **Two consecutive disjoint segments** of a bisector can be viewed as **connected** to a **degenerate degree-2 vertex** in a hole
 - A hole is **NOT** entirely visible from a point
 - Boundary of a hole belongs to **different SPM regions**
 - p’s or q’s SPM region changes
 - A **degenerate** degree-2 vertex inside a hole
Disconnected Voronoi Edge

- Two consecutive disjoint segments of a bisector can be viewed as connected to a degenerate degree-2 vertex in a hole.
 - A hole is NOT entirely visible from a point.
 - Boundary of a hole belongs to different SPM regions.
 - p’s or q’s SPM region changes.
 - A degenerate degree-2 vertex inside a hole.
- \# disjoint segments = \# degenerate degree-2 vertices + 1.
Abstract Higher-Order Voronoi Diagrams

Our Result

\[V_k(S) \text{ has at most } 2k(n - k) \text{ faces (tight)} \]

- **Two axioms**
 - (A3) At most 3 bisectors intersect at the same point
 - (A4) No first-order Voronoi region is empty
Abstract Higher-Order Voronoi Diagrams

Our Result

\(V_k(S) \) has at most \(2k(n - k) \) faces (tight)

- Two axioms
 - (A3) At most 3 bisectors intersect at the same point
 - (A4) No first-order Voronoi region is empty
- A category of Voronoi diagrams: many concrete cases
Abstract Higher-Order Voronoi Diagrams

Our Result

\[V_k(S) \] has at most \(2k(n - k) \) faces (tight)

- Two axioms
 - \((A3)\) At most 3 bisectors intersect at the same point
 - \((A4)\) No first-order Voronoi region is empty
- A category of Voronoi diagrams: many concrete cases
- A shaper bound
 - \(O(k(n - k)) \) for points in \(L_p \) metric (Lee 1982)
 - \(O(k(n - k)) \) for line segments in Euclidean metric (Papadopoulou and Zavershynskyi 2012)
Number of Faces

Lee (1982) in Euclidean

\# faces of \(V_k(S) = 2kn - k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \)

- \(S_i \) is \# of unbounded edges of \(V_i(S) \)
Number of Faces

Lee (1982) in Euclidean

\[\text{\# faces of } V_k(S) = 2kn - k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \]

- \(S_i \) is \# of unbounded edges of \(V_i(S) \)

Lee’s formula still holds in abstract version
Number of Faces

Lee (1982) in Euclidean

\[
\# \text{ faces of } V_k(S) = 2kn - k^2 - n + 1 - \sum_{i=1}^{k-1} S_i
\]

- \(S_i \) is \(\# \) of unbounded edges of \(V_i(S) \)

Lee’s formula still holds in abstract version

- If \(\sum_{i=1}^{k-1} S_i \geq k(k-1) \), \(\# \) faces \(\leq 2k(n-k) \)
Number of Unbounded Edges of $V_k(S)$

An **unbounded** Voronoi edge := an **unbounded** piece of a bisector
Number of Unbounded Edges of $V_k(S)$

An unbounded Voronoi edge := an unbounded piece of a bisector $x \in \mathbb{R}^2$ not on any bisecting curve of J:

An order of S at x: $p <_x q \iff x \in D(p, q)$
Number of Unbounded Edges of $V_k(S)$

An **unbounded** Voronoi edge := an **unbounded** piece of a bisector $x \in \mathbb{R}^2$ not on any bisecting curve of \mathcal{J}:

An order of S at x: $p <_x q \iff x \in D(p, q)$

First k elements in this order = k nearest sites of x
Number of Unbounded Edges of $V_k(S)$

An unbounded Voronoi edge := an unbounded piece of a bisector $x \in \mathbb{R}^2$ not on any bisecting curve of \mathcal{J}:

An order of S at x: $p <_x q \iff x \in D(p, q)$

First k elements in this order = k nearest sites of x
An unbounded Voronoi edge := an unbounded piece of a bisector $x \in \mathbb{R}^2$ not on any bisecting curve of \mathcal{J}:

An order of S at x: $p <_x q \iff x \in D(p, q)$

First k elements in this order = k nearest sites of x
Number of Unbounded Edges of $V_k(S)$

An unbounded Voronoi edge := an unbounded piece of a bisector $x \in \mathbb{R}^2$ not on any bisecting curve of J:

An order of S at x : $p <_x q \iff x \in D(p, q)$

First k elements in this order = k nearest sites of x

$S_k = \#$ switches between k^{th} and $(k + 1)^{st}$ positions
Number of Switches among the First $k+1$ Elements

Bigger class of permutation sequences:

1. Two consecutive permutations differ by one switch
 - When we cross $B(p, q)$, p and q must be adjacent in the permutations

2. Any two elements switch exactly twice
 - A bisector $B(p, q)$ has exactly two unbounded pieces
Number of Switches among the First $k+1$ Elements

Bigger class of permutation sequences:

1. Two consecutive permutations differ by one switch
 - When we cross $B(p, q)$, p and q must be adjacent in the permutations

2. Any two elements switch exactly twice
 - A bisector $B(p, q)$ has exactly two unbounded pieces

Lemma

If P is such a sequence, then

$$\# \text{switches among first } k+1 \text{ elements} \leq k(2n - k - 1)$$
Total Number of Unbounded Edge

\[
\min \# \text{ unbounded } i^{th}\text{-order edges }, 1 \leq i \leq k - 1 \\
= \min \# \text{ switches at positions } 1, \ldots, k \\
\geq \underbrace{2 \binom{n}{2}}_{= \text{total # switches}} - \max \# \text{ switches at last } n - k + 1 \text{ positions} \\
= \text{first } n-k+1 \text{ positions} \\
\geq n(n-1) - (n - k)(2n - (n - k) - 1) = k(k - 1)
\]
Total Number of Unbounded Edge

\[
\min \# \text{ unbounded } i^{th}\text{-order edges}, 1 \leq i \leq k - 1 \\
= \min \# \text{ switches at positions } 1, \ldots, k \\
\geq 2 \binom{n}{2} - \max \# \text{ switches at last } n - k + 1 \text{ positions} \\
= \text{total } \# \text{ switches} \\
\geq n(n - 1) - (n - k)(2n - (n - k) - 1) = k(k - 1) \\
\]

\# faces of \(V_k(S) \) = \(2kn - k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \) \\
\geq k(k-1) \\
\leq 2kn - 2k^2 = 2k(n - k)
Abstract Voronoi Diagrams with Disconnected Regions

For all subsets $S' \subseteq S$ of size 3:

\begin{align*}
 R_2 &= \bigcup p_2 \in S' \text{VR}(p_2; S) \\
 \text{Old Axiom:} & \quad \text{VR}(p_2; S) \text{ is path-connected} \\
 \text{New Axiom:} & \quad \text{VR}(p_2; S) \text{ consists of at most} s \text{ connected components}
\end{align*}
Abstract Voronoi Diagrams with Disconnected Regions

For all subsets \(S' \subseteq S \) of size 3:

\[
(A1) \quad \mathbb{R}^2 = \bigcup_{p \in S} \overline{VR(p, S')}
\]
Abstract Voronoi Diagrams with Disconnected Regions

For all subsets $S' \subseteq S$ of size 3:

(A1) $\mathbb{R}^2 = \bigcup_{p \in S} \text{VR}(p, S')$

Old Axiom:

(A2) $\text{VR}(p, S')$ is path-connected
Abstract Voronoi Diagrams with Disconnected Regions

For all subsets $S' \subseteq S$ of size 3:

(A1) $\mathbb{R}^2 = \bigcup_{p \in S} \overline{VR(p, S')}$

Old Axiom:

(A2) $VR(p, S')$ is path-connected

Theorem (R. Klein, K. Mehlhorn, S. Meiser ’93)

If all Voronoi regions are connected, $V(S)$ can be computed in expected time $O(n \log n)$.
Abstract Voronoi Diagrams with Disconnected Regions

For all subsets $S' \subseteq S$ of size 3:

(A1) $\mathbb{R}^2 = \bigcup_{p \in S} \overline{VR(p, S')}$

Old Axiom:

(A2) $VR(p, S')$ is path-connected

New Axiom:

(A2) $VR(p, S')$ consists of at most s connected components

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Main Theorem

Theorem

If each Voronoi region in a diagram of 3 sites consists of at most s components, $V(S)$ can be computed in expected time $O(s^2 n \sum_{j=2}^{n} \frac{m_j}{j})$.

$m_j :=$ average number of faces per region over all AVD’s of j sites.
Computing $V(S)$

For $s = 1$

Randomized incremental construction in expected time $O(n \log n)$

K. Mehlhorn, S. Meiser, C. O’Dúnlaing ’91
R. Klein, K. Mehlhorn, S. Meiser ’93
Computing $V(S)$

For $s = 1$

Randomized incremental construction in expected time $O(n \log n)$

K. Mehlhorn, S. Meiser, C. O'Dúnlaing '91
R. Klein, K. Mehlhorn, S. Meiser '93

$V(R)$ already constructed, history graph $H(R)$ available

- nodes: Voronoi edges ever constructed
Computing $V(S)$

For $s = 1$

Randomized incremental construction in expected time $O(n \log n)$

K. Mehlhorn, S. Meiser, C. O’Dúnlaing ’91
R. Klein, K. Mehlhorn, S. Meiser ’93

$V(R)$ already constructed, history graph $H(R)$ available

- nodes: Voronoi edges ever constructed

1. pick t randomly in $S \setminus R$
Computing $V(S)$

For $s = 1$

Randomized incremental construction in expected time $O(n \log n)$

K. Mehlhorn, S. Meiser, C. O’Dúnlaing ’91
R. Klein, K. Mehlhorn, S. Meiser ’93

$V(R)$ already constructed, history graph $H(R)$ available

- nodes: Voronoi edges ever constructed

1. pick t randomly in $S \setminus R$
2. use $H(R)$ to determine $V(R) \cap VR(t, R \cup \{t\})$
Computing $V(S)$

For $s = 1$

Randomized incremental construction in expected time $O(n \log n)$

K. Mehlhorn, S. Meiser, C. O'Dúnlaing '91
R. Klein, K. Mehlhorn, S. Meiser '93

$V(R)$ already constructed, history graph $H(R)$ available

- nodes: Voronoi edges ever constructed

1. pick t randomly in $S \setminus R$
2. use $H(R)$ to determine $V(R) \cap VR(t, R \cup \{t\})$
3. update $V(R \cup \{t\}) \leftarrow V(R)$ and $H(R \cup \{t\}) \leftarrow H(R)$
Problem with $H(R)$ for disconnected regions

New edge e is made successor of all edges of $P \cup \{e_1, e_2\}$
Problem with $H(R)$ for disconnected regions

New edge e is made successor of all edges of $P \cup \{e_1, e_2\}$

VR($s, R \cup \{s, t\}$) does not intersect the predecessors of e
Problem with $H(R)$ for disconnected regions

New edge e is made successor of all edges of $P \cup \{e_1, e_2\}$

$VR(s, R \cup \{s, t\})$ does not intersect the predecessors of e

Cannot use $H(R \cup \{t\})$ to find the intersection

C. Bohler, R. Klein, and C.-H. Liu New Results on Geodesic and Abstract Voronoi Diagrams
New $\mathcal{H}(R)$: Vertical Trapezoidal Decomposition

$s \geq 2$
Assumption: Bisectors are x-monotone (at most constantly many points of vertical tangency)
New $\mathcal{H}(R)$: Vertical Trapezoidal Decomposition

$s \geq 2$
Assumption: Bisectors are x-monotone (at most constantly many points of vertical tangency)
$\rightarrow V^*(R)$: vertical decomposition of $V(R)$ into pseudo-trapezoidal cells

[Seidel, Sharir, Agarwal]
New $\mathcal{H}(R)$: Vertical Trapezoidal Decomposition

$s \geq 2$
Assumption: Bisectors are x-monotone (at most constantly many points of vertical tangency)
$\rightarrow V^*(R)$: vertical decomposition of $V(R)$ into pseudo-trapezoidal cells

[Seidel, Sharir, Agarwal]

![Diagram of H(R)](image_url)

$H(R)$
- nodes: all trapezoids ever created
New $\mathcal{H}(R)$: Vertical Trapezoidal Decomposition

$s \geq 2$
Assumption: Bisectors are x-monotone (at most constantly many points of vertical tangency)
$\rightarrow V^*(R)$: vertical decomposition of $V(R)$ into pseudo-trapezoidal cells

[Seidel, Sharir, Agarwal]
Constructing $\mathcal{H}(R \cup \{t\})$
Constructing $\mathcal{H}(R \cup \{t\})$

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Constructing $\mathcal{H}(R \cup \{t\})$
Constructing $\mathcal{H}(R \cup \{t\})$

Lemma

If t is in conflict with a trapezoid A of $V^*(R)$, then t is in conflict with a predecessor of A in $\mathcal{H}(R)$.

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Special Voronoi Diagrams

Tree-Like Voronoi Diagrams
Special Voronoi Diagrams

Tree-Like Voronoi Diagrams

- Points in convex position
Special Voronoi Diagrams

Tree-Like Voronoi Diagrams

- Points in convex position
- Farthest Voronoi diagram
Special Voronoi Diagrams

Tree-Like Voronoi Diagrams

- Points in convex position
- Farthest Voronoi diagram
- Farthest abstract Voronoi diagram

[Mehlhorn, Meiser, Rasch, 2001]
Special Voronoi Diagrams

Tree-Like Voronoi Diagrams

- Points in convex position
- Farthest Voronoi diagram
- Farthest abstract Voronoi diagram

[Mehlhorn, Meiser, Rasch, 2001]

If the ordering of the sites around the tree is known and each site occurs only once. Can we compute the diagram in time $O(n)$?
Theorem (A. Aggarwal, L. Guibas, J. Saxe, P. Shor, ’87)

Given the ordering of n points in convex position, the Voronoi diagram can be computed in time $O(n)$.
Former Results

Theorem (A. Aggarwal, L. Guibas, J. Saxe, P. Shor, ’87)

Given the ordering of n points in convex position, the Voronoi diagram can be computed in time $O(n)$.

How about abstract VD’s?
Former Results

Theorem (A. Aggarwal, L. Guibas, J. Saxe, P. Shor, ’87)

Given the ordering of n points in convex position, the Voronoi diagram can be computed in time $O(n)$.

How about abstract VD’s?

Theorem (R. Klein, A. Lingas, ’93)

If $V(S')$ is a tree for all $S' \subseteq S$, given the ordering of the n sites at infinity, the abstract Voronoi diagram can be computed in time $O(n)$.
Basic Idea
Basic Idea

1. Choose a tentative set of **red** sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.

2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites).

Diagram:

- H is the horizontal line.
- x, v, t, s, and q are points along the line.

Running Time: $O(n)$
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.
2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites).
3. Using the structure of $V(B)$, choose a crimson subset $C \subseteq R$, such that no two regions of crimson sites interfere.
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.

2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites).

3. Using the structure of $V(B)$, choose a crimson subset $C \subseteq R$, such that no two regions of crimson sites interfere.

If C contains a fixed percentage δ of sites.

Running Time: $O(n)$

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Basic Idea

1. Choose a tentative set of red sites \(R \subseteq S \) such that no two regions of consecutive red sites interfere.
2. Compute \(V(B) \) recursively, \(B = S \setminus R \) (\(B \): blue sites).
3. Using the structure of \(V(B) \), choose a crimson subset \(C \subseteq R \), such that no two regions of crimson sites interfere.
4. Construct incrementally \(V(B \cup C) \) from \(V(B) \) by inserting the crimson sites one by one.

If \(C \) contains a fixed percentage \(q \).

Running Time: \(O(n) \).

C. Bohler, R. Klein, and C.-H. Liu

New Results on Geodesic and Abstract Voronoi Diagrams
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.
2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites).
3. Using the structure of $V(B)$, choose a crimson subset $C \subseteq R$, such that no two regions of crimson sites interfere.
4. Construct incrementally $V(B \cup C)$ from $V(B)$ by inserting the crimson sites one by one.
5. Compute $V(S \setminus (B \cup C))$ recursively.
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere.
2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites).
3. Using the structure of $V(B)$, choose a crimson subset $C \subseteq R$, such that no two regions of crimson sites interfere.
4. Construct incrementally $V(B \cup C)$ from $V(B)$ by inserting the crimson sites one by one.
5. Compute $V(S \setminus (B \cup C))$ recursively.
6. Merge $V(B \cup C)$ and $V(S \setminus (B \cup C))$.

If C contains a fixed percentage...
Basic Idea

1. Choose a tentative set of red sites $R \subseteq S$ such that no two regions of consecutive red sites interfere
2. Compute $V(B)$ recursively, $B = S \setminus R$ (B: blue sites)
3. Using the structure of $V(B)$, choose a crimson subset $C \subseteq R$, such that no two regions of crimson sites interfere
4. Construct incrementally $V(B \cup C)$ from $V(B)$ by inserting the crimson sites one by one
5. Compute $V(S \setminus (B \cup C))$ recursively
6. Merge $V(B \cup C)$ and $V(S \setminus (B \cup C))$

If C contains a fixed percentage of sites
⇒ Running Time: $O(n)$
Forest-Like Abstract Voronoi Diagrams

Theorem (C. Bohler, R. Klein, C. Liu, 2013)

If $V(S)$ is a tree and $V(S')$ is a forest for all $S' \subseteq S$, given the ordering of the n sites at infinity, the abstract Voronoi diagram can be computed in time $O(n)$.
Difference

\[\pi = (p, q, r, s, t, u, v, w, x, y) \]

\[V(S) \text{ is a tree.} \]
\[H = (q, r, s, u, v, x) \]

\[V(S) \text{ is a tree.} \]

\[V(S') \text{ may be a forest for } S' \subseteq S \]
Problem 1

1 Red-Blue Coloring

\[\pi = (p, q, r, s, t, u) \]
Problem 1

1. Red-Blue Coloring

\[\pi = (p, q, r, s, t, u) \]

Consecutive red regions can be adjacent.
Problem 1

1 Red-Blue Coloring

\[\pi = (p, q, r, s, t, u) \]

Consecutive red regions can be adjacent.

\[\Rightarrow \text{Can not select Crimson Sites} \]
Problem 2

2. Tree-Lemma

Blue Diagram may not be a tree
Problem 2

2 Tree-Lemma

Blue Diagram may not be a tree
Red regions may not intersect the blue diagram
Problem 2

2 Tree-Lemma

Blue Diagram may not be a tree
Red regions may not intersect the blue diagram
⇒ Can not select crimson site
Thank you for your attention!