## New results on the coarseness of bicolored point sets

J.M. Díaz-Báñez<sup>1</sup> R. Fabila-Monroy<sup>2</sup> P. Pérez-Lantero<sup>3</sup> I. Ventura<sup>4</sup>

1,4 Departamento Matemática Aplicada II, Universidad de Sevilla, España.

<sup>2</sup>CINVESTAV, Instituto Politécnico Nacional, México.

<sup>3</sup>Departamento de Computación, Universidad de Valparaíso, Chile.

February 16, 2014

Let  $S = R \cup B$  be a bicolored set of points.

Is S "well-separated by color", or on the contrary, "are the colors well-blended"?



Bereg et al. CGTA, 2013 gave a formal definition of well-blended point sets!!!

Let  $S = R \cup B$  be a bicolored set of points.

Is S "well-separated by color", or on the contrary, "are the colors well-blended"?



Bereg et al. CGTA, 2013 gave a formal definition of well-blended point sets!!!

#### Bereg et al. CGTA, 2013

• On the real line:

We say that a bicolored point set is **well-blended** if in any interval the discrepancy (difference between the number of red and blue points) is bounded by a constant.



 The natural generalization (the discrepancy of any convex set is bounded by a constant) for two dimensions does not work:



Bereg et al. CGTA, 2013

• On the real line:

We say that a bicolored point set is **well-blended** if in any interval the discrepancy (difference between the number of red and blue points) is bounded by a constant.



 The natural generalization (the discrepancy of any convex set is bounded by a constant) for two dimensions does not work:



Bereg et al. CGTA, 2013

Intuitively



Bereg et al. CGTA, 2013

Intuitively



- [Bautista et al. Computing maximal islands. 2011.]: A subset S' of S is an **island** if there is a convex set C on the plane such that  $S' = C \cap S$ .
- The discrepancy of an island is the difference between the number of red and blue points.



- A convex partition of S is a partition of S into islands, with pairwise disjoint convex hulls.
- The discrepancy of a convex partition  $\prod = \{S_1, S_2, \dots S_k\}$  of S, denoted by  $disc(\prod)$ , is the minimum of  $disc(S_i)$  for  $i = 1, \dots, k$ .
- The coarseness of S is the maximum of  $disc(\prod)$  over all the convex partitions of S.



- A convex partition of S is a partition of S into islands, with pairwise disjoint convex hulls.
- The discrepancy of a convex partition  $\prod = \{S_1, S_2, \dots S_k\}$  of S, denoted by  $disc(\prod)$ , is the minimum of  $disc(S_i)$  for  $i = 1, \dots, k$ .
- The coarseness of S is the maximum of  $disc(\prod)$  over all the convex partitions of S.



Some examples:

$$C(S) = \max_{\Pi} \min_{S_i \in \Pi} \operatorname{disc}(S_i)$$





$$C(S) \ge \min\{\#(R), \#(B)\}$$

The more blended set of points has the smaller coarseness.

Some examples:

$$C(S) = \max_{\Pi} \min_{S_i \in \Pi} \operatorname{disc}(S_i)$$





$$C(S) \ge \min\{\#(R), \#(B)\}$$

Some examples:

$$C(S) = \max_{\Pi} \min_{S_i \in \Pi} \operatorname{disc}(S_i)$$





$$C(S) \ge \min\{\#(R), \#(B)\}\$$

The more blended set of points has the smaller coarseness.

#### Bereg et al. CGTA, 2013

- Given r and b, let  $\mathcal{C}(S, r, b)$  (the best coloring) be the smallest coarseness taken over all the bicolorings  $\{R, B\}$  of S such that |R| = r, and |B| = b.
- A bicoloring  $\{R, B\}$  of S is **well blended** if the coarseness of  $\{R, B\}$  is within a constant factor of C(S, r, b).

• A bicoloring  $\{R, B\}$  of S is **well blended** if the **coarseness** of  $\{R, B\}$  is within a constant factor of  $\mathcal{C}(S, r, b)$ .

## Problem 1: Coarseness approximation

Let  $S = R \cup B$  be a bicolored set of points in the plane, is there any polynomial-time constant approximation algorithm for computing the coarseness of S?

### Problem 2: Coarseness bounding

Given a set S of n points in general position in the plane, what is the smallest coarseness of S taken over all the bicolorings  $\{R,B\}$  of S such that |R|=r, and |B|=b?

• A bicoloring  $\{R, B\}$  of S is well blended if the coarseness of  $\{R, B\}$  is within a constant factor of C(S, r, b).

## Problem 1: Coarseness approximation

Let  $S = R \cup B$  be a bicolored set of points in the plane, is there any polynomial-time constant approximation algorithm for computing the coarseness of S?

### Problem 2: Coarseness bounding

Given a set S of n points in general position in the plane, what is the smallest coarseness of S taken over all the bicolorings  $\{R, B\}$  of S such that |R| = r, and |B| = b?

• A bicoloring  $\{R,B\}$  of S is well blended if the coarseness of  $\{R,B\}$  is within a constant factor of  $\mathcal{C}(S,r,b)$ .

## Problem 1: Coarseness approximation

Let  $S = R \cup B$  be a bicolored set of points in the plane, is there any polynomial-time constant approximation algorithm for computing the coarseness of S?

### Problem 2: Coarseness bounding

Given a set S of n points in general position in the plane, what is the smallest coarseness of S taken over all the bicolorings  $\{R,B\}$  of S such that |R|=r, and |B|=b?

### The main tool

An island S' of S is k-separable if there exist k halfplanes  $H_1, H_2, \ldots, H_k$  such that

$$S' = S \cap (H_1 \cap H_2 \cap \dots H_k)$$

We denote the family of all the k- separable islands of S with  $\mathcal{I}_k$ .



(Edelsbrunner, Robison, and Shen 1990) A collection of n compact, convex, and pairwise disjoint sets in the plane may be covered with n non-overlapping convex polygons with a total of not more than 6n-9 sides.

**Theorem:** Every convex partition  $\Pi$  of S into islands has a 5-separable island.

## Problem 1: Coarseness approximation

**Lemma 1:** If there exists  $S_1 \in \mathcal{I}_1$  s.t.  $\operatorname{disc}(S_1) \geq t$ , then there exists a convex partition  $\Pi$  s.t.

$$\mathsf{disc}(\Pi) \geq \max\left\{t/2, t - |r - b|\right\}$$



### Proof.

- **②**  $t |r b| \ge t/2 \Rightarrow \text{for } \Pi = \{S_1, S_2\}, \text{ disc}(\Pi) \ge t |r b| = \max\{t/2, t |r b|\}.$
- **③**  $t |r b| < t/2 \Rightarrow \operatorname{disc}(S) = |r b| > t/2$  $\Rightarrow \text{ for } \Pi = \{S\}, \operatorname{disc}(\Pi) > t/2 = \max\{t/2, t - |r - b|\}.$



## Problem 1: Coarseness approximation

**Lemma 2:** If there exists  $S_1 \in \mathcal{I}_2$  s.t.  $disc(S_1) \geq t$ , then there exists a convex partition  $\Pi$  s.t.

$$\mathsf{disc}(\Pi) \geq \max\left\{t/8, t/4 - |r - b|\right\}$$



## Proof.

- **1**  $\operatorname{disc}(S_2) \le t/2 \Rightarrow \operatorname{disc}(S_1 \cup S_2) \ge t/2; \ \exists \ \Pi_1 : \operatorname{disc}(\Pi_1) \ge \max\{t/4, t/2 |r-b|\}$
- ②  $\operatorname{disc}(S_2) > t/2$  and  $\operatorname{disc}(S_3) > t/2$ :  $\operatorname{disc}(S_4) \ge t/4 \Rightarrow \operatorname{disc}(\Pi_2) \ge t/4$  for  $\Pi_2 = \{S_1, S_2, S_3, S_4\}$  $\operatorname{disc}(S_4) < t/4 \Rightarrow \operatorname{disc}(S_2 \cup S_4) > t/4$ ;  $\exists \ \Pi_3 : \operatorname{disc}(\Pi_3) \ge \max\{t/8, t/4 - |r - b|\}$

February 16, 2014

## Problem 1: Coarseness approximation

$$D_k := \max_{I \in \mathcal{I}_k} \operatorname{disc}(I)$$

**Lemma 3:**  $D_3 \le 4D_2$ , and  $D_{k+1} \le 2D_k$  for  $k \ge 3$ .

**Approximation!** Compute  $APX := \max \left\{ \frac{D_2}{8}, \frac{D_2}{4} - |r - b| \right\}$  which satisfies

$$\max\left\{\frac{\mathcal{C}(S)}{128}, \frac{\mathcal{C}(S)}{64} - |r - b|\right\} \leq APX \leq \mathcal{C}(S)$$

### Proof.

- $\max \left\{ \frac{D_2}{8}, \frac{D_2}{4} |r b| \right\} \le C(S)$  from **Lemma 2**.
- $C(S) \le D_5 \le 2D_4 \le 4D_3 \le 16D_2$  since  $\Pi \cap \mathcal{I}_5 \ne \emptyset$  for all  $\Pi$  and **Lemma 3**
- $D_2$  can be computed in  $O(n^3 \log n)$  time (**Dobkin and Gunopulos 1995**)



### Problem 2: Coarseness bounding

Given a set S of n points in general position in the plane, what is the smallest coarseness of S taken over all the bicolorings  $\{R,B\}$  of S such that |R|=r, and |B|=b?

## Problem 2: Coloring with low coarseness

Discrepancy Theory: Chazelle 2004.

- A set system  $(S, \mathcal{Y})$ , where |S| = n and  $\mathcal{Y} \subseteq 2^S$
- Dual shatter function  $\pi_{\mathcal{Y}}^*(m)$ : the maximum number of equivalent classes on S defined by m elements of  $\mathcal{Y}$  ( $p \equiv q$  iff p and q are covered by the same sets)



$$H_2$$

$$Y_1 = H_1 \cap S$$

$$Y_2 = H_2 \cap S$$

$$\mathcal{Y} = \{Y_1, Y_2\}$$

$$\pi_{\mathcal{Y}}^*(2) = 4$$

(Dual shatter function bound) Let d>1 and C be constants such that  $\pi_{\mathcal{Y}}^*(m)\leq Cm^d$  for all  $m\leq |\mathcal{Y}|$ . Then there exists a coloring of S such that:

 $\operatorname{disc}(Y)$  is upper bounded by  $O\left(n^{1/2-1/2d}\sqrt{\log n}\right)$  for every  $Y\in\mathcal{Y}$ .

# Problem 2: Coloring with low coarseness

The upper bound

**Lemma 4:** Let S be a set of n points in convex position in the plane then

$$\pi_{\mathcal{I}_k}^*(m) \leq 4km$$

**Sketch of the proof:** Assume that S is sorted clockwise around its convex hull. A k-separable island must consist of at most k intervals of consecutive points of S.



# Problem 2: Coloring with low coarseness

The upper bound

**Lemma 4:** Let S be a set of n points in convex position in the plane then

$$\pi_{\mathcal{I}_k}^*(m) \leq 4km$$

**Sketch of the proof:** Assume that *S* is sorted clockwise around its convex hull. A k-separable island must consist of at most k intervals of consecutive points of S.



**Lemma 4:** Let S be a set of n points in convex position in the plane then

$$\pi_{\mathcal{I}_k}^*(m) \leq 4km$$

**Sketch of the proof:** Assume that S is sorted clockwise around its convex hull. A k-separable island must consist of at most k intervals of consecutive points of S.



Consider a family of m, k-separable islands.

- There are at most 2km points of S that are the endpoints of any such intervals.
- There are at most 2km regions into which the remaining points (which are not endpoints of any interval) can lie.

**Total:** at most 4km equivalence classes.

**Lemma 5:** Let S be a set of n points in general position in the plane then

$$\pi_{\mathcal{I}_k}^*(m) \leq (k^2 + 4k)m^2$$

**Sketch of the proof:** Let  $\mathcal{F}$  be a family of m, k-separable islands on S.

- Points lying in the convex hull of some island.
  - There at most  $4km^2$  equivalence classes for points in the boundary of some island in  $\mathcal{F}$ .
- Points not lying in the boundary of any island.

Each equivalence class is contained in a cell of the arrangement defined by the set of lines that separate each island I from  $S \setminus I$ .

This arrangement has at most  $k^2m^2$  cells.

**Theorem:** If k is a constant, the family  $\mathcal{I}_k$  of all k-separable islands satisfies:

$$\operatorname{\mathsf{disc}}(I) = O\left(n^{1/2 - 1/2d} \sqrt{\log n}\right) = O\left(n^{1/4} \sqrt{\log n}\right) \ \ \textit{for all} \ \ I \in \mathcal{I}_k$$

**Theorem:** The UPPER bound! For every set S of n points in general position in the plane there exists a coloring such that the coarseness of S is upper bounded by

$$O(n^{1/4}\sqrt{\log n})$$

### Sketch of the proof:

- There is a coloring such that  $\operatorname{disc}(I) = O(n^{1/4} \sqrt{\log n})$  for all  $I \in \mathcal{I}_5$ .
- $\Pi \cap \mathcal{I}_5 \neq \emptyset$  for all island partitions  $\Pi$



$$\operatorname{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- ⓐ  $\operatorname{disc}(S) < \frac{C}{2}n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{C}{2}n^{1/4}$ ⇒  $\Pi = \{H \cap S, \overline{H} \cap S\}$

$$\operatorname{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- ①  $\operatorname{disc}(S) \geq \frac{C}{2} n^{1/4} \Rightarrow \Pi = \{S\}$
- ①  $\operatorname{disc}(S) < \frac{C}{2}n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{C}{2}n^{1/4}$  $\Rightarrow \Pi = \{H \cap S, \overline{H} \cap S\}$

$$\operatorname{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- ②  $\operatorname{disc}(S) < \frac{c}{2}n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{c}{2}n^{1/4}$  $\Rightarrow \Pi = \{H \cap S, \overline{H} \cap S\}$

February 16, 2014

$$\operatorname{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- **3**  $\operatorname{disc}(S) < \frac{C}{2}n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{C}{2}n^{1/4}$  $\Rightarrow \Pi = \{H \cap S, \overline{H} \cap S\}$

February 16, 2014

$$\operatorname{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- ②  $\operatorname{disc}(S) < \frac{C}{2} n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{C}{2} n^{1/4}$ \Rightarrow \Pi = \{H \cap S, \overline{H} \cap S\}

$$\mathsf{disc}(S\cap H)=\Omega(n^{1/4})$$

**Theorem:** The LOWER bound! For arbitrarily large values of n, there exist sets of n points in general position in the plane with coarseness  $\Omega(n^{1/4})$ .

**Sketch of the proof:** For such point sets S, there exists H s.t.  $disc(S \cap H) \ge Cn^{1/4}$  for any coloring.

Given a convex partition  $\Pi$ ,  $C(S) \ge \operatorname{disc}(\Pi)$ .

Given a coloring, we have two cases:

- **3**  $\operatorname{disc}(S) < \frac{C}{2} n^{1/4} \Rightarrow \operatorname{disc}(\overline{H} \cap S) \ge \operatorname{disc}(S \cap H) \operatorname{disc}(S) \ge \frac{C}{2} n^{1/4}$  $\Rightarrow \Pi = \{H \cap S, \overline{H} \cap S\}$

## Open problems

- Prove or disprove the NP-hardness of computing the coarseness.
- 2 Improve the constant approximation.
- **③** Improve the upper bound of the discrepancy of *k*-separable islands (e.g. the discrepancy of the 1-separable islands is  $O(n^{1/4})$  ⊂  $o(n^{1/4}\sqrt{\log n})$ )
- ullet Find the exact asymptotic upper bound of the minimum coarseness of point sets  $\mathcal C$  (interesting and hard).

## Thank you!

## Open problems

- Prove or disprove the NP-hardness of computing the coarseness.
- 2 Improve the constant approximation.
- **③** Improve the upper bound of the discrepancy of *k*-separable islands (e.g. the discrepancy of the 1-separable islands is  $O(n^{1/4})$  ⊂  $o(n^{1/4}\sqrt{\log n})$ )
- ullet Find the exact asymptotic upper bound of the minimum coarseness of point sets  $\mathcal C$  (interesting and hard).

## Thank you!