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Let S = R ∪ B be a bicolored set of points.
Is S “well-separated by color”, or on the contrary, “are the colors well-blended”?

Bereg et al. CGTA, 2013 gave a formal definition of well-blended point sets!!!
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Well-blended point sets Bereg et al. CGTA, 2013

On the real line:

We say that a bicolored point set is well-blended if in any interval the discrepancy
(difference between the number of red and blue points) is bounded by a constant.

The natural generalization (the discrepancy of any convex set is bounded by a
constant) for two dimensions does not work:
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Well-blended point sets Bereg et al. CGTA, 2013

Intuitively
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Well-blended point sets Bereg et al. CGTA, 2013

The formal definition

[Bautista et al. Computing maximal islands. 2011.]: A subset S ′ of S is an island if
there is a convex set C on the plane such that S ′ = C ∩ S .

The discrepancy of an island is the difference between the number of red and blue
points.

S ′
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Well-blended point sets Bereg et al. CGTA, 2013

The formal definition

A convex partition of S is a partition of S into islands, with pairwise disjoint
convex hulls.

The discrepancy of a convex partition
∏

= {S1,S2, . . .Sk} of S , denoted by
disc(

∏
), is the minimum of disc(Si ) for i = 1, . . . , k.

The coarseness of S is the maximum of disc(
∏

) over all the convex partitions of S .
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S1 S2

S3 S4
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Well-blended point sets
Some examples:

C (S) = max
Π

min
Si∈Π

disc(Si)

C(S) = 1 C(S) ≥ min{#(R),#(B)}

The more blended set of points has the smaller coarseness.
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Well-blended point sets Bereg et al. CGTA, 2013

The formal definition

Given r and b, let C(S , r , b) (the best coloring) be the smallest coarseness taken
over all the bicolorings {R,B} of S such that |R| = r , and |B| = b.

A bicoloring {R,B} of S is well blended if the coarseness of {R,B} is within a
constant factor of C(S , r , b).
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Open problems in Bereg et al. CGTA, 2013

A bicoloring {R,B} of S is well blended if the coarseness of {R,B} is within a
constant factor of C(S , r , b).

Problem 1: Coarseness approximation
Let S = R ∪ B be a bicolored set of points in the plane, is there any polynomial-time
constant approximation algorithm for computing the coarseness of S?

Problem 2: Coarseness bounding
Given a set S of n points in general position in the plane, what is the smallest coarseness
of S taken over all the bicolorings {R,B} of S such that |R| = r , and |B| = b?
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The main tool

An island S ′ of S is k-separable if there exist k halfplanes H1,H2, . . . ,Hk such that

S ′ = S ∩ (H1 ∩ H2 ∩ . . .Hk)

We denote the family of all the k- separable islands of S with Ik .

S ′ ∈ I5

(Edelsbrunner, Robison, and Shen 1990) A collection of n compact, convex, and
pairwise disjoint sets in the plane may be covered with n non-overlapping convex
polygons with a total of not more than 6n − 9 sides.

Theorem: Every convex partition Π of S into islands has a 5-separable island.
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Problem 1: Coarseness approximation

Lemma 1: If there exists S1 ∈ I1 s.t. disc(S1) ≥ t, then there exists a convex partition Π
s.t.

disc(Π) ≥ max {t/2, t − |r − b|}

S1
S2

Proof.

1 disc(S2) ≥ t − |r − b|
2 t − |r − b| ≥ t/2 ⇒ for Π = {S1, S2}, disc(Π) ≥ t − |r − b| = max{t/2, t − |r − b|}.
3 t − |r − b| < t/2⇒ disc(S) = |r − b| > t/2

⇒ for Π = {S}, disc(Π) > t/2 = max{t/2, t − |r − b|}.
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Problem 1: Coarseness approximation

Lemma 2: If there exists S1 ∈ I2 s.t. disc(S1) ≥ t, then there exists a convex partition Π
s.t.

disc(Π) ≥ max {t/8, t/4− |r − b|}

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4

Proof.

1 disc(S2) ≤ t/2⇒ disc(S1 ∪ S2) ≥ t/2; ∃ Π1 : disc(Π1) ≥ max {t/4, t/2− |r − b|}
2 disc(S2) > t/2 and disc(S3) > t/2:

disc(S4) ≥ t/4⇒ disc(Π2) ≥ t/4 for Π2 = {S1, S2, S3,S4}
disc(S4) < t/4⇒ disc(S2 ∪ S4) > t/4; ∃ Π3 : disc(Π3) ≥ max {t/8, t/4− |r − b|}

(EuroGIGA 2014) New results on the coarseness of bicolored point sets February 16, 2014 14 / 23



Problem 1: Coarseness approximation

Dk := maxI∈Ik disc(I )

Lemma 3: D3 ≤ 4D2, and Dk+1 ≤ 2Dk for k ≥ 3.

Approximation! Compute APX := max
{

D2
8
, D2

4
− |r − b|

}
which satisfies

max

{
C(S)

128
,
C(S)

64
− |r − b|

}
≤ APX ≤ C(S)

Proof.

max
{

D2
8
, D2

4
− |r − b|

}
≤ C(S) from Lemma 2.

C(S) ≤ D5 ≤ 2D4 ≤ 4D3 ≤ 16D2 since Π ∩ I5 6= ∅ for all Π and Lemma 3

D2 can be computed in O(n3 log n) time (Dobkin and Gunopulos 1995)
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Open problems in Bereg et al. CGTA, 2013

Problem 2: Coarseness bounding
Given a set S of n points in general position in the plane, what is the smallest coarseness
of S taken over all the bicolorings {R,B} of S such that |R| = r , and |B| = b?
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Problem 2: Coloring with low coarseness
Discrepancy Theory: Chazelle 2004.

A set system (S ,Y), where |S | = n and Y ⊆ 2S

Dual shatter function π∗Y(m): the maximum number of equivalent classes on S
defined by m elements of Y (p ≡ q iff p and q are covered by the same sets)

H2

H1

Y1 = H1 ∩ S
Y2 = H2 ∩ S
Y = {Y1, Y2}
π∗Y(2) = 4

(Dual shatter function bound) Let d > 1 and C be constants such that π∗Y(m) ≤ Cmd

for all m ≤ |Y|. Then there exists a coloring of S such that:

disc(Y ) is upper bounded by O
(
n1/2−1/2d√log n

)
for every Y ∈ Y.

(EuroGIGA 2014) New results on the coarseness of bicolored point sets February 16, 2014 17 / 23



Problem 2: Coloring with low coarseness The upper bound

Lemma 4: Let S be a set of n points in convex position in the plane then

π∗Ik
(m) ≤ 4km

Sketch of the proof: Assume that S is sorted clockwise around its convex hull.
A k-separable island must consist of at most k intervals of consecutive points of S .

�
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Problem 2: Coloring with low coarseness The upper bound

Lemma 4: Let S be a set of n points in convex position in the plane then

π∗Ik
(m) ≤ 4km

Sketch of the proof: Assume that S is sorted clockwise around its convex hull.
A k-separable island must consist of at most k intervals of consecutive points of S .

Consider a family of m, k-separable islands.

There are at most 2km points of S that are
the endpoints of any such intervals.

There are at most 2km regions into which the
remaining points (which are not endpoints of
any interval) can lie.

Total: at most 4km equivalence classes.

�
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Problem 2: Coloring with low coarseness The upper bound

Lemma 5: Let S be a set of n points in general position in the plane then

π∗Ik
(m) ≤ (k2 + 4k)m2

Sketch of the proof: Let F be a family of m, k-separable islands on S .

Points lying in the convex hull of some island.

There at most 4km2 equivalence classes for points in the boundary of some island
in F .

Points not lying in the boundary of any island.

Each equivalence class is contained in a cell of the arrangement defined by the set
of lines that separate each island I from S \ I .

This arrangement has at most k2m2 cells.

�

Theorem: If k is a constant, the family Ik of all k-separable islands satisfies:

disc(I ) = O
(
n1/2−1/2d

√
log n

)
= O

(
n1/4

√
log n

)
for all I ∈ Ik
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Problem 2: Coloring with low coarseness The upper bound

Theorem: The UPPER bound! For every set S of n points in general position in the
plane there exists a coloring such that the coarseness of S is upper bounded by

O(n1/4
√

log n)

.

Sketch of the proof:

There is a coloring such that disc(I ) = O(n1/4√log n) for all I ∈ I5.

Π ∩ I5 6= ∅ for all island partitions Π

�
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Problem 2: Coloring with low coarseness The lower bound

(Alexander 1990, Chazelle et al. 1995) For arbitrarily large n, there exist n-point sets
S such that for any coloring of S a halfplane H exists such that:

disc(S ∩ H) = Ω(n1/4)

Theorem: The LOWER bound! For arbitrarily large values of n, there exist sets of n
points in general position in the plane with coarseness Ω(n1/4).

Sketch of the proof: For such point sets S , there exists H s.t. disc(S ∩H) ≥ Cn1/4 for
any coloring.

Given a convex partition Π, C(S) ≥ disc(Π).

Given a coloring, we have two cases:

1 disc(S) ≥ C
2
n1/4 ⇒ Π = {S}

2 disc(S) < C
2
n1/4 ⇒ disc(H ∩ S) ≥ disc(S ∩ H)− disc(S) ≥ C

2
n1/4

⇒ Π = {H ∩ S ,H ∩ S}
�
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Open problems

1 Prove or disprove the NP-hardness of computing the coarseness.

2 Improve the constant approximation.

3 Improve the upper bound of the discrepancy of k-separable islands (e.g. the
discrepancy of the 1-separable islands is O(n1/4) ⊂ o(n1/4√log n))

4 Find the exact asymptotic upper bound of the minimum coarseness of point sets C
(interesting and hard).

Thank you!

(EuroGIGA 2014) New results on the coarseness of bicolored point sets February 16, 2014 23 / 23



Open problems

1 Prove or disprove the NP-hardness of computing the coarseness.

2 Improve the constant approximation.

3 Improve the upper bound of the discrepancy of k-separable islands (e.g. the
discrepancy of the 1-separable islands is O(n1/4) ⊂ o(n1/4√log n))

4 Find the exact asymptotic upper bound of the minimum coarseness of point sets C
(interesting and hard).

Thank you!

(EuroGIGA 2014) New results on the coarseness of bicolored point sets February 16, 2014 23 / 23


