Disjoint compatibility of non-crossing matchings of point sets in convex position

Oswin Aichholzer (TU Graz)
Andrei Asinowski (FU Berlin)
Tillmann Miltzow (FU Berlin)
$2k$ labeled points in convex position in the plane
$2k$ labeled points in convex position in the plane

Non-crossing straight-line perfect matchings
$2k$ labeled points in convex position in the plane

Non-crossing straight-line perfect matchings

(The number of such matchings is the kth Catalan number)
$2k$ labeled points in convex position in the plane

Non-crossing straight-line perfect matchings

(The number of such matchings is the kth Catalan number)
Two matchings, M and L, are *disjoint compatible* if they don’t use the same edges, and the edges of M don’t cross the edges of L.

![Diagram showing disjoint compatible matchings](image)
The Disjoint Compatibility Graph (DCM_k):
Vertices correspond to matchings; two vertices are adjacent iff the corresponding matchings are disjoint compatible.
The Disjoint Compatibility Graph (DCM_k):
Vertices correspond to matchings; two vertices are adjacent iff the corresponding matchings are disjoint compatible.

$k = 4$
Background:
C. Hernando, F. Hurtado and M. Noy.
Graph of non-crossing perfect matchings. (2002):
 Studied matchings of points in convex position,
 but with respect to a different kind of reconfiguration.
Background:
C. Hernando, F. Hurtado and M. Noy.
Graph of non-crossing perfect matchings. (2002):
 Studied matchings of points in convex position,
 but with respect to a different kind of reconfiguration.
O. Aichholzer, S. Bereg, A. Dumitrescu, A. García, C. Huemer,
F. Hurtado, M. Kano, A. Márquez, D. Rappaport,
Compatible geometric matchings (2009):
Background:

C. Hernando, F. Hurtado and M. Noy.

Graph of non-crossing perfect matchings. (2002):

Studied matchings of points in convex position, but with respect to a different kind of reconfiguration.

1. Studied disjoint compatibility of matchings for point sets in general (not necessarily convex) position.
Background:

C. Hernando, F. Hurtado and M. Noy.

Graph of non-crossing perfect matchings. (2002):

- Studied matchings of points in convex position, but with respect to a different kind of reconfiguration.

1. Studied disjoint compatibility of matchings for point sets in general (not necessarily convex) position.

2. For every odd k, found examples of “isolated” matchings.
Background:
C. Hernando, F. Hurtado and M.Noy.
Graph of non-crossing perfect matchings. (2002):
 Studied matchings of points in convex position,
 but with respect to a different kind of reconfiguration.
 1. Studied disjoint compatibility of matchings
 for point sets in general (not necessarily convex) position.
 2. For every odd \(k \), found examples of “isolated” matchings.
 3. Conj.: For even values of \(k \), there are no isolated matchings.
Background:

C. Hernando, F. Hurtado and M. Noy.

Graph of non-crossing perfect matchings. (2002):

- Studied matchings of points in convex position, but with respect to a different kind of reconfiguration.

1. Studied disjoint compatibility of matchings for point sets in general (not necessarily convex) position.

2. For every odd k, found examples of “isolated” matchings.

3. **Conj.**: For even values of k, there are no isolated matchings.

M. Ishaque, D. Souvaine and C. Tóth.

Disjoint compatible geometric matchings (2013):

1. Proved the conjecture.
Background:

C. Hernando, F. Hurtado and M. Noy.

Graph of non-crossing perfect matchings (2002):

- Studied matchings of points in convex position, but with respect to a different kind of reconfiguration.

1. Studied disjoint compatibility of matchings for point sets in general (not necessarily convex) position.
2. For every odd k, found examples of “isolated” matchings.
3. **Conj.**: For even values of k, there are no isolated matchings.

M. Ishaque, D. Souvaine and C. Tóth.
Disjoint compatible geometric matchings (2013):

1. Proved the conjecture.
2. “It remains an open problem whether [the disjoint compatibility graph for even k] is always connected”.

C. Hernando, F. Hurtado and M. Noy.

Graph of non-crossing perfect matchings (2002):

- Studied matchings of points in convex position, but with respect to a different kind of reconfiguration.
DCM_2

DCM_4
DCM_6
DCM_8
For given k, denote by $c(k)$ the number of isomorphism classes of connected components in DCM_k.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(k)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
For given k, denote by $c(k)$ the number of isomorphism classes of connected components in DCM_k.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>≥ 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(k)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Theorem: For each $k \geq 9$, the connected components of DCM_k form exactly three isomorphism classes. Specifically: there are several components of the smallest size, several components of the medium size, and one component of the biggest size.

<table>
<thead>
<tr>
<th></th>
<th>odd $k \geq 9$</th>
<th>even $k \geq 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>$\frac{k+1}{2}$</td>
<td>$\frac{k}{2}$</td>
</tr>
<tr>
<td>small: size</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>small: number</td>
<td>$\frac{1}{\ell} \left(\frac{4\ell-2}{\ell-1}\right)$</td>
<td>$\ell \cdot 2^{\ell-1}$</td>
</tr>
<tr>
<td>medium: size</td>
<td>ℓ</td>
<td>$6\ell - 6$</td>
</tr>
<tr>
<td>medium: number</td>
<td>$(2\ell - 1) \cdot 2^{\ell-3}$</td>
<td>$\ell \cdot 2^{\ell-2}$</td>
</tr>
<tr>
<td>big: number</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A *block* is four consecutive points $i, i + 1, i + 2, i + 3$ connected by edges $(i, i + 3)$ and $(i + 1, i + 2)$.

An *antiblock* is four consecutive points $i, i + 1, i + 2, i + 3$ connected by edges $(i, i + 1)$ and $(i + 2, i + 3)$.

![Diagram of a block and an antiblock](image-url)
A *block* is four consecutive points $i, i + 1, i + 2, i + 3$ connected by edges $(i, i + 3)$ and $(i + 1, i + 2)$.

An *antiblock* is four consecutive points $i, i + 1, i + 2, i + 3$ connected by edges $(i, i + 1)$ and $(i + 2, i + 3)$.

Observation: If we have a block in a matching M, and a matching L is disjoint compatible to M, then in L we have an antiblock on the same points.
A block is four consecutive points \(i, i + 1, i + 2, i + 3 \) connected by edges \((i, i + 3)\) and \((i + 1, i + 2)\).

An antiblock is four consecutive points \(i, i + 1, i + 2, i + 3 \) connected by edges \((i, i + 1)\) and \((i + 2, i + 3)\).

Observation: If we have a block in a matching \(M \), and a matching \(L \) is disjoint compatible to \(M \), then in \(L \) we have an antiblock on the same points.
Small components for odd k: “isolated” matchings.
Small components for odd k: ‘isolated’ matchings.
Small components for odd k: “isolated” matchings.
Small components for even k: “pairs”.

\[\begin{array}{cccccccc}
\text{V} & \text{A} & \text{A} & \text{A} & \text{A} & \text{V} & \text{A} & \text{A} \\
\end{array} \]
Small components for even k: “pairs”.

![Graph with blue and red lines showing pairs for even k.]
Medium components for odd k: stars with $\frac{k-1}{2}$ leaves.

$k = 11$
Medium components for even \(k \):

A path \(P \) with \((k-2) \) vertices (labeled 1, 2, \ldots, k-2),

Each vertex of \(P \) has two adjacent leaves,

In addition, all the pairs \((a, b)\), where \(a, b \) are on \(P \), \(a < b \), \(a \) even, \(b \) odd, are connected by an edge.

\[k = 12 \]
A matching is *special* if it belongs to the types described above. Otherwise, a matching is *regular*.

Theorem. For $k \geq 9$, all regular matchings form one connected component.
A matching is *special* if it belongs to the types described above. Otherwise, a matching is *regular*.

Theorem. For $k \geq 9$, all regular matchings form one connected component.

Theorem. For $k \geq 9$, each regular matching is connected to the *rings*.
A matching is *special* if it belongs to the types described above. Otherwise, a matching is *regular*.

Theorem. For $k \geq 9$, all regular matchings form one connected component.

Theorem. For $k \geq 9$, each regular matching is connected to the rings.
A matching is *special* if it belongs to the types described above. Otherwise, a matching is *regular*.

Theorem. For $k \geq 9$, all regular matchings form one connected component.

Theorem. For $k \geq 9$, each regular matching is connected to the *rings*.

![Diagram of a ring structure with red lines connecting the points]
A matching is *special* if it belongs to the types described above. Otherwise, a matching is *regular*.

Theorem. For \(k \geq 9 \), all regular matchings form one connected component.

Theorem. For \(k \geq 9 \), each regular matching is connected to the *rings*.

Lemma. For \(k \geq 9 \), the component of \(DCM_k \) that contains the rings, is not bipartite.
For $k \geq 9$, each regular matching is connected to the rings.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.

\[L \]
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For \(k \geq 9 \), each regular matching is connected to the rings.

Proof. For \(k = 9, 10 \), this was verified directly.

For \(k \geq 11 \): Induction.

Find a block or an antiblock and look at the remaining part \((L)\).

If \(L \) is regular, induction applies: we transfer \(L \) to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remainig part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block "oscillates".
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remainig part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.
For \(k \geq 9 \), each regular matching is connected to the rings.

Proof. For \(k = 9, 10 \), this was verified directly.

For \(k \geq 11 \): Induction.

Find a block or an antiblock and look at the remaining part (\(L \)).

If \(L \) is regular, induction applies: we transfer \(L \) to a ring, while the (anti)block “oscillates”.

If \(L \) is special: we find a way to connect the matching to a matching of the previous kind: (anti)block+regular.
For $k \geq 9$, each regular matching is connected to the rings.

Proof. For $k = 9, 10$, this was verified directly.

For $k \geq 11$: Induction.

Find a block or an antiblock and look at the remaining part (L).

If L is regular, induction applies: we transfer L to a ring, while the (anti)block “oscillates”.

If L is special: we find a way to connect the matching to a matching of the previous kind: (anti)block + regular.
An open problem:

Characterize isolated matchings for point sets in \textit{general} position (for odd k).
An open problem:

Characterize isolated matchings for point sets in \textbf{general} position (for odd k).

A sufficient (but not necessary) condition: