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Straight skeletons in the plane



Straight Skeletons of Simple Polygons

were introduced by Aichholzer, Aurenhammer, Alberts, Gärtner in
1995. [AAAG95]

I Defined by shrinking process

I Each edge moves inwards at the same speed

Figure: Straight skeleton [AAAG95]

Events

I edge event

I split event

Complexity

I n faces

I n − 2 nodes

I 2n − 3 arcs



Notice

I Straight skeleton is unique for a given polygon

I Its structure may be interpreted as plane tree

I Bisector graph is not unique

Figure: Bisector graph [AAAG95]



Construction

I Straight skeleton is interpreted
as 2-dim. projection of a 3-dim.
roof model

I A horizontal plane Π moves
upwards

I Events are stored in a priority
queue

I Priority reflects the height of Π Figure: Roof model [AAAG95]



Complexity bounds

I The straight skeleton of a convex polygon is equal to
its medial axis. It can be constructed in Θ(n) time.
[AGSS87]

I Lower bound for polygons with holes: Ω(n log n)

Figure: Lower bound for polygons with holes [Hub11]

Algorithm Time Space
[AAAG95] O(nr log n) O(n)
[AA98] O(n3 log n) (pract. O(n log n)) O(n)

[VY13] O(n4/3+ε) O(n)



Straight skeletons in 3-space



Straight Skeletons of 3-dim. Polyhedra

I Defined by a shrinking process

I Each face moves inwards at the same speed

First work was done by Barequet, Eppstein, Goodrich and Vaxman
in 2008. [BEGV08]

Contents of their work

I Orthogonal polyhedra formed by unions of cubical voxels

I Polyhedra with axis-parallel edges and faces

I Ambiguities of the straight skeleton for non-axis-aligned
polyhedra



Skeleton computation of orthogonal polyhedra

A robust implementation was done by Martinez et al. [MVPG11]

Contents

I Compute Voronoi diagram
with L∞ distance

I Medial axis with L∞
distance of orthogonal
polyhedra is equal to the
straight skeleton Figure: Example of their

method [MVPG11]

We are interested in straight skeletons of general polyhedra



Complexity bounds of straight skeletons

Description Bound Reference

convex polyhedra
Ω(n2)
O(n2)

well known (medial axis)
well known (medial axis)

general polyhedra
Ω(n2α2(n))
O(n4)

[BEGV08]
trivial

Figure: Lower bound for convex
polyhedra

Figure: Lower bound for general
polyhedra (set of prisms)



Our work



Straight skeletons for general polyhedra

Figure: Example of an initial offset of vertex v (deg. 6)

Initial offset

I At the very first moment, each vertex (deg. ≥ 4)
gets decomposed into vertices of degree 3.

I If we know how to split these vertices,
we know how to handle all occurring events.



Splitting convex vertices

Figure: Convex vertex (deg. 5) Figure: Split vertex

I For each incident face of the given vertex:
I Calculate the offset plane of adjacent faces (3 planes)
I Determine the distance between the intersection point of the

offset planes and the vertex

I Split the vertex using the farthest distance



Combinatorial vertex splitter

Vertices of degree 3 span an unrooted binary tree.
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Figure: Combinations for deg. 4
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Figure: Combinations for deg. 5

Number of possible unrooted binary trees

Catalan number

Cn :=
1

n + 1

(
2n

n

)
= O(cn), c > 1



Check for self-intersections

I All facets need to be self-intersection
free.

I No edges are allowed to intersect any
other facet.

Figure: Invalid surface:
self-intersecting facetsc

r

r

c
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Figure: Valid solution
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Figure: Self-intersecting polyhedron



Saddle points

Figure: Front view Figure: Top view

Figure: Convex solution Figure: Reflex solution

I This simple example shows that offsetting a polyhedron is
not unique.



Existence of a solution

Proof

I Consider any unrooted binary tree to split the vertex

I There will be parts that grow (increase the volume)
and parts that shrink

I There is always a path that can be used to
cut the growing parts

I This path is where the inside “wraps” to the outside

Figure: Path to cut



Implementation

I Implemented in C++ (approx. 35k LOC)

I Our geometry kernel has double precision only
CGAL’s kernel1 can optionally be linked

I Resulting skeleton is stored using a relational database
(SQLite)

I Interactive animation is done using OpenGL

I Software rendering for PostScript output

I Automated testing

I Live demo

1http://www.cgal.org/

http://www.cgal.org/


Live demo



Conclusion

I The offset of a polyhedron is not unique
I There is always a solution
I The vertex splitter shows how to handle occurring events
I Our work solved open problems [BEGV08]
I Implementation shows the results

Figure: Wedge on tabletop



Future work

Mesh generation based on straight skeletons

Idea is based on
“Skeleton-based Modeling Operations on Solids”[STG+97]

Figure: Mesh generation
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